Prediction of the duration of phenological stages in two varieties of standard carnation (<i>Dianthus caryophyllus L</i>.) in terms of thermal time
PDF

Keywords

Phenology
Phenological model
Base temperature
Growing degree-days

How to Cite

Buitrago-Rueda, L., Parra-Coronado, A., & Fischer, G. (2025). Prediction of the duration of phenological stages in two varieties of standard carnation (Dianthus caryophyllus L.) in terms of thermal time. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 49(190), 102-112. https://doi.org/10.18257/raccefyn.3144

Abstract

Although carnation is one of the world’s most widely used cut flowers, several basic aspects of its growth and development have yet to be studied. Here, we aimed to determine the phenological behavior and development of a commercial carnation crop relating temperature in terms of thermal time for Mizuky and Zafiro cultivars. The study was conducted in a commercial production farm greenhouse in Tocancipá, Cundinamarca (Colombia). Sampling was done from the plants’ pinching to the end of the harvest in four plantings on different dates. We estimated the base temperature (Tb) for the vegetative and reproductive stages using the minimum coefficient of variation method for growing degree-days (GDD or thermal time). Our results showed that Tb and thermal time varied depending on the developmental stage of the crop. The life cycle was 242 days for the Mizuky cultivar and 240 days for the Zafiro. The Mizuky cultivar required Tbs of 0.66°C for the vegetative stage and 0.84°C for the reproductive stage, while the Zafiro required higher Tbs of 1.81 and 2.64°C, respectively. The GDD accumulations from the vegetative stage to cutting were 2606° for the Mizuky and 2624° for the Zafiro; the times from pinching to harvest were 187 days for the Mizuky and 185 days for the Zafiro. We concluded that the Zafiro needs a higher Tb than the Mizuky, but given their close thermal times, we recommend similar crop management for both.

PDF

References

Abeliotis, K., Barla, S.A., Detsis, V., Malindretos, G. (2016). Life cycle assessment of carnation production in Greece. Journal of Cleaner Production, 112, 32-38. https://doi.org/10.1016/j.jclepro.2015.06.018

Acero-Camelo, A., Molina, E., Parra-Coronado, A., Fischer, G., Carulla-Fornaguera, J.E. (2021). Base growth temperature and phyllochron for kikuyu grass (Cenchrus clandestinus; Poaceae).Acta Biológica Colombiana, 26(2), 160-169. http://dx.doi.org/10.15446/abc.v26n2.83199

Baracaldo, A.P., Ibagué A., Flórez, V. (2010). Tasas e índices de crecimiento a segundo pico de cosecha en clavel estándar cv. Nelson cultivado en suelo y en sustratos. Agronomía Colombiana, 28(2), 209-217.

Baracaldo-Argüello, A.P., Ibagué-Ovalle, A., Flórez-Roncancio, V.J., Chaves-Córdoba, B. (2010). Crecimiento en clavel estándar cv. Nelson, en suelo y en sustratos. Bragantia, 69(1), 1-8.

Bordón, F. & Blasco, A.E. (2018). Planificación de cultivos. Editorial Sintesis S.A.

Boxriker, M., Boehm, R., Krezdorn, N., Rotter, B., Piepho, H.P. (2017). Comparative transcriptome analysis of vase life and carnation type in Dianthus caryophyllus L. Scientia Horticulturae, 217, 61-72. https://doi.org/10.1016/j.scienta.2017.01.015

Bunt, A.C. & Cockshull, K.E. (2017). Dianthus caryophyllus. In Halevy, A.H. (ed.), Handbook of flowering. Vol. I. eBook. CRC Press. https://doi.org/10.1201/9781351072533

Dona, A.J., Fatmi, M.U., Singh, D., Benny, J.C. (2017). Evaluation of carnation (Dianthus caryophyllus L.) varieties under naturally ventilated polyhouse. Plant Archives, 17(2), 1262-1266.

Filgueira, J. (2011). Experiencias en mejoramiento del clavel (Dianthus caryophyllus L.). Universidad Militar Nueva Granada.

Gobade, N. (2024). Production technology of carnation. In: Himmatbhai B.A., Jhade, R.K., Dawar, I.S., Chandrakar, O., Roy, T. (eds.). Production technology of fruits and flowers, p.94-110. Elite Publication House.

Gocan, T.-M., Andreica, I., Poșta, D.-S., Rozsa, M., Lazăr, V., Rózsa, S. (2022). Maintaining the quality of carnation cut flowers depending on temperature. Current Trends in Natural Sciences, 11(22), 247-254. https://doi.org/10.47068/ctns.2022.v11i22.029

Hasanuzzaman, M., Nahar, K., Alam, M.M., Roychowdhury, R., Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 4, 9643-9684. https://doi.org/10.3390/ijms14059643

Hatfield, J.L. & Prueger, J.H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, 4-10. https://doi.org/10.1016/j.wace.2015.08.001

Higashiura, M., Kajihara, S., Uno, Y., Yamanaka, M. (2020). Effects of temperature and timing/ duration of night cooling treatments on flowering time and quality of cut flowers of standard type carnation (Dianthus caryophyllus). The Horticulture Journal, 89(1), 61–68. https://doi.org/10.2503/hortj.UTD-101

Hou, P., Liu, Y., Xie, R., Ming, B., Ma, D., Li, S., Mei, X. (2014). Temporal and spatial variation in accumulated temperature requirements of maize. Field Crops Research, 158, 55-64.

Larsen, R. & Gertsson, U. (1992). Model analysis of shoot elongation in Chrysanthemum × morifolium. Scientia Horticulturae, 49(3-4), 277-289.

Leguizamo-Medina, M.F., Pinzón-Sandoval, E.H, Balaguera-López, H.E. (2022). Phenology analysis growing and degree days of flower bud growth in three Dianthus caryophyllus L. varieties under greenhouse conditions. Revista Colombiana de Ciencias Hortícolas, 16(3), e15296. https://doi.org/10.17584/rcch.2022v16i3.15296

López, M., Cháves, B., Flórez, V., Salazar, M. (2010). Modelo de aparición de nudos en clavel (Dianthus caryophyllus L.) cv. Delphi cultivado en sustratos. Agronomía Colombiana, 28(1), 47-54.

López, M.A., Cháves, B., Flórez, V.J. (2011). Modelos de cultivos y modelos fenológicos. In: Flórez, V.J. (ed.). Sustratos, manejo del clima, automatización y control en sistemas de cultivo sin suelo, p. 153-177. Editorial Universidad Nacional de Colombia.

López, M.A., Cháves, B., Flórez, V.J. (2014). Potential growing model for the standard carnation cv. Delphi. Agronomía Colombiana, 32(2), 196-204.

Maitra, S. & Roychowdhury, N. (2013). Performance of different standard carnation (Dianthus caryophyllus L.) cultivars in the plains of West Bengal, India. International Journal of Bioresource and Stress Management 4, 395-399.

Mattson, N.S. & Lieth, J.H. (2007). The effect of temperature on year round development of rose shoots initiated using cutting or bending. Acta Horticulturae, 751, 121-129.

Mayorga, M., Fischer, G., Melgarejo, L.M., Parra-Coronado, A. (2020). Growth, development and quality of Passiflora tripartita var. mollissima fruits under two environmental tropical conditions. Journal of Applied Botany and Food Quality, 93, 66-75. https://doi.org/10.5073/JABFQ.2020.093.009

Minagricultura. (2021). Cadena de Flores, Follaje y Ornamentales. Dirección de Cadenas Agrícolas y Forestales. Ministerio de Agricultura y Desarrollo Rural. chromeextension://efaidnbmnnnibpcajpcglclefindmkaj/https://sioc.minagricultura.gov.co/Flores/Documentos/2021-03-31%20Cifras%20Sectoriales.pdf

Orjuela-Angulo, M., Parra-Coronado, A., Camacho-Tamayo, J.H. (2022). Base temperature for a phenological stage in plum cultivar Horvin (Prunus salicina Lindl.). Revista Colombiana de Ciencias Hortícolas, 16(3), 1-8. https://doi.org/10.17584/rcch.2022v16i3.15179

Pace, A., Dunn, B.L, Fontanier, C., Goad, C., Singh, H. (2022). Cut-flower carnation photoluminescence: Potential new value-added product. HortScience 57(3), 491-496. https://doi.org/10.21273/HORTSCI16402-21

Parra-Coronado, A., Fischer, G., Chaves-Córdoba, B. (2015). Tiempo térmico para estados fenológicos reproductivos de la feijoa (Acca sellowiana (O. Berg) Burret). Acta Biológica Colombiana, 20(1), 163-173. http://dx.doi.org/10.15446/abc.v20n1.43390

Phadnawis, N.B. & Saini, A.D. (1992). Yield models in wheat based on sowing time and phenological development. Annals of Plant Physiology, 6, 52-59.

Qadir, G., Ahmad, S., Hassan, F., Cheema, M.A. (2006). Oil and fatty acid accumulation in sunflower as influenced by temperature variation. Pakistan Journal of Botany, 38(4), 1137-1147.

Röber, R. & Wohanka, W. (2014). 90 Hauptkulturen im Zierpflanzenbau. Eugen Ulmer KG.

Salazar, M.R. (2006). Un modelo simple de producción potencial de uchuva (Physalis peruviana L.). [Ph.D. tesis]. Facultad de Agronomía, Universidad Nacional de Colombia.

Salazar, M.R., Jones, J.W., Chaves, B., Cooman, A., Fischer, G. (2008). Base temperature and simulation model for nodes appearance in cape gooseberry (Physalis peruviana L.). Revista Brasileira de Fruticultura, 30(4), 862-867. https://doi.org/10.1590/S010029452008000400004

Salazar-Gutiérrez, M.R., Johnson, J., Chávez-Córdoba, B., Hoogenboom, G. (2013). Relationship of base temperature to development of winter wheat. International Journal of Plant Production, 7(4), 741-762. https://doi.org/10.22069/ijpp.2013.1267

Singh, A.K., Singh, D.K., Singh, B., Punetha, S., Rai, D. (2013). Evaluation of carnation (Dianthus caryophyllus L.) varieties under naturally ventilated greenhouse in mid hills of Kumaon Himalaya. African Journal of Agricultural Research, 8(29), 4111-4114. https://doi.org/10.5897/AJAR2013.7073

Sikder, S. (2009). Accumulated heat unit and phenology of wheat cultivars as influenced by late sowing heat stress condition. Journal of Agriculture & Rural Development, 7(1-2), 57-64.

Trudgill, D.L., Honek, A., Li, D., Van Straalen, N.M. (2005). Thermal time - Concepts and utility. Annals of Applied Biology, 146, 1-14.

Vélez-Carvajal, N.A., Díaz-Ortíz, M.C., Flórez-Roncancio, V.J. (2022). Behavior of NPK in carnation (Dianthus caryophyllus L.) cv. Delphi on a soilless crop system with recycling of drainage. Journal of Plant Nutrition, 46(9), 1856–1867. https://doi.org/10.1080/01904167.2022.2155531

Villagran, E. & Bojacá, C. (2020). Analysis of the microclimatic behavior of a greenhouse used to produce carnation Dianthus caryophyllus L.). Ornamental Horticulture, 26(2), 190-204. https://doi.org/10.1590/2447-536X.v26i2.2150

Zapata, D., Salazar, M., Chaves, B., Keller, M., Hoogenboom, G. (2015). Estimation of the base temperature and growth phase duration in terms of thermal time for four grapevine cultivars. International Journal of Biometeorology, 59, 1771-1781. https://doi.org/10.1007/s00484015-0985-y

Zavalloni, C., Andresen, J.A., Flore J.A. (2006). Phenological models of flower bud stages and fruit growth of ‘Montmorency’ sour cherry based on growing degree-day accumulation. Journal of the American Society for Horticultural Science, 131, 601-607.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales