Aislantes de espín selectivo
PDF (English)

Cómo citar

Silva Valencia, J. (2022). Aislantes de espín selectivo. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 46(181), 877–898. https://doi.org/10.18257/raccefyn.1774

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

Estados aislantes de espín selectivo surgen en sistemas compuestos de fermiones con dos grados de libertad internos y otro tipo de portador, que puede ser fermiónioco o bosónico. Estos aislantes se caracterizan por un estado sin gap para un tipo de fermiones y un estado aislante para los otros, donde los últimos satsfacen una relación de commensurabilidad que involucra al otro tipo de portafor. Nosotros revismos los diferentes escenarios donde estos particulares aislantes surgen, enfocandonos en las mezclas Bose-Fermi, que son el más reciente y promisor escenaro para observar estos aislantes en los montajes de átomos fríos.

https://doi.org/10.18257/raccefyn.1774

Palabras clave

Transiciones de fase cuánticas | sitemas fuertemente correlacionados | modelo de Hubbard | modelo de red de Kondo | DMRG
PDF (English)

Citas

Albus, A., Illuminate, F., Eisert, J. (2003). Mixtures of bosonic and fermionic atoms in optical lattices. Physical Review A, 68(2), 023606. https://doi.org/10.1103/PhysRevA.68.023606

Anders, P., Werner, P., Troyer, M., Sigrist, M., Pollet, L. (2012). From the cooper problem to canted supersolids in Bose-Fermi mixtures. Physical Review Letters, 109(20), 206401. https://doi.org/10.1103/PhysRevLett.109.206401

Anisimov, V., Nekrasov, I., Kondakov, D., Rice, T., Sigrist, M. (2002). Orbital-selective Mottinsulator transition in Ca2−xSrxRuO4. The European Physical Journal B, 25(2), 191. https://doi.org/10.1140/epjb/e20020021

Avella, R., Mendoza-Arenas, J. J., Franco, R., Silva-Valencia, J. (2019). Insulator phases of a mixture of spinor fermions and hard-core bosons. Physical Review A, 100(6), 063620. https://doi.org/10.1103/PhysRevA.100.063620

Avella, R., Mendoza-Arenas, J. J., Franco, R., Silva-Valencia, J. (2020). Mixture of scalar bosons and two-color fermions in one dimension: Superfluid-insulator transitions. Physical Review A, 102(3), 033341. https://doi.org/10.1103/PhysRevA.102.033341

Basylko, S. A., Lundow, P. H., Rosengren, A. (2008). One-dimensional Kondo lattice model studied through numerical diagonalization. Physical Review B, 77(7), 073103. https://doi.org/10.1103/PhysRevB.77.073103

Batchelor, M. T., Bortz, M., Guan, X. W., Oelkers, N. (2005). Exact results for the onedimensional mixed boson-fermion interacting gas. Physical Review A, 72(6), 061603. https://doi.org/10.1103/PhysRevA.72.061603

Bazzanella, M., Nilsson, J. (2014). Ferromagnetism in the one-dimensional Kondo lattice: Meanfield approach via majorana fermion canonical transformation. Physical Review B, 89(3), 035121. https://doi.org/10.1103/PhysRevB.89.035121

Bertussi, P. R., Neto, M. B. S., Rappoport, T. G., Malvezzi, A. L., dos Santos, R. R. (2011). Incommensurate spin-density-wave and metal-insulator transition 17 in the one-dimensional periodic Anderson model. Physical Review B, 84(7), 075156. https://doi.org/10.1103/PhysRevB.84.075156

Best, T., Will, S., Schneider, U., Hackerm üller, L., van Oosten, D., Bloch, I., L ühmann, D.- S. (2009). Role of interactions in 87Rb-40K Bose-Fermi mixtures in a 3d optical lattice.Physical Review Letters, 102(3), 030408. https://doi.org/10.1103/PhysRevLett.102.030408

Bilitewski, T., Pollet, L. (2015). Exotic superconductivity through bosons in a dynamical cluster approximation. Physical Review B, 92(18), 184505. https://doi.org/10.1103/PhysRevB.92.184505

Bloch, I., Dalibard, J., Nascimbéne, S. (2012). Quantum simulations with ultracold quantum gases. Nat. Phys., 8(4), 267. https://doi.org/10.1038/nphys2259

Bloch, I., Dalibard, J., Zwerger, W. (2008). Many-body physics with ultracold gases. Review of Modern Physics, 80(3), 885. https://doi.org/10.1103/RevModPhys.80.885

Bois, V., Capponi, S., Lecheminant, P., Moliner, M., Totsuka, K. (2015). Phase diagrams of onedimensional half-filled two-orbital SU(n) cold fermion systems. Physical Review B, 91(7), 075121. https://doi.org/10.1103/PhysRevB.91.075121

Bukov, M., Pollet, L. (2014). Mean-field phase diagram of the Bose-Fermi Hubbard model. Physical Review B, 89(9), 094502. https://doi.org/10.1103/PhysRevB.89.094502

Capponi, S., Lecheminant, P., Totsuka, K. (2016). Phases of one-dimensional SU(n) cold atomic Fermi gases—from molecular Luttinger liquids to topological phases. Annals of Physics, 367, 50. https://doi.org/10.1016/j.aop.2016.01.011

Caprara, S., Rosengren, A. (1997). Ground-state magnetic properties of the Kondo lattice model at low electron densities. Europhysics Letters, 39(1), 55. https://doi.org/10.1209/epl/i1997-00313-4

Caro, R. C., Franco, R., Figueira, M. S., Silva-Valencia, J., Avignon, M. (2020). Weak coupling magnetism of the ionic Kondo lattice model. Journal of Magnetism and Magnetic Materials, 497, 165936. https://doi.org/10.1016/j.jmmm.2019.165936

Cazalilla, M., Ho, A. (2003). Instabilities in binary mixtures of one-dimensional quantum degenerate gases. Physical Review Letters, 91(15), 150403. https://doi.org/10.1103/PhysRevLett.91.150403

Cazalilla, M. A., Citro, R., Giamarchi, T., Orignac, E., Rigol, M. (2011). One dimensional bosons: From condensed matter systems to ultracold gases. Review of Modern Physics, 83(4), 1405. https://doi.org/10.1103/RevModPhys.83.1405

Cazalilla, M. A., Rey, A. M. (2014). Ultracold fermi gases with emergent SU(n) symmetry. Reports on Progress in Physics, 77(12), 124401. https://doi.org/10.1088/0034-4885/77/12/124401

Cheng, K., Wang, L., Xu, Y., Yang, F., Zhu, H., Ke, J., Lu, X., Xia, Z., Wang, J., Shi, Y., Yang, Y., Luo, Y. (2019). Realization of Kondo chain in CeCo2Ga8. Physical Review Materials, 3(2), 021402. https://doi.org/10.1103/PhysRevMaterials.3.021402

de Forges de Parny, L., Traynard, M., Herbert, F., Rousseau, V. G., Scalettar, R. T., Batrouni, G. G. (2010). Phase diagram of spin- 12 bosons in a one-dimensional optical lattice. Physical Review A, 82(6), 063602. https://doi.org/10.1103/PhysRevA.82.063602

Deh, B., Gunton, W., Klappauf, B. G., Li, Z., Semczuk, M., Dongen, J. V., Madison, K. W. (2010). Giant feshbach resonances in 6Li-85Rb mixtures. Physical Review A, 82(2), 020701(R). https://doi.org/10.1103/PhysRevA.82.020701

Delehaye, M., Laurent, S., Ferrier-Barbut, I., Jin, S., Chevy, F., Salomon, C. (2015). Critical velocity and dissipation of an ultracold Bose-Fermi counterflow. Physical Review Letters, 115(26), 265303. https://doi.org/10.1103/PhysRevLett.115.265303

DeSalvo, B. J., Patel, K., Cai, G., Chin, C. (2019). Observation of fermion-mediated interactions between bosonic atoms. Nature, 568(7750), 61. https://doi.org/10.1038/s41586-019-1055-0

Dobrzyniecki, J., Sowiński, T. (2020). Simulating artificial 1d physics with ultra-cold fermionic atoms: Three exemplary themes. Advanced Quantum Technologies, 3(6), 2000010.18 https://doi.org/10.1002/qute.202000010

Edri, H., Raz, B., Matzliah, N., Davidson, N., Ozeri, R. (2020). Observation of spin-spin fermionmediated interactions between ultracold bosons. Physical Review Letters, 124(16), 163401. https://doi.org/10.1103/PhysRevLett.124.163401

Esslinger, T. (2010). Fermi-Hubbard physics with atoms in an optical lattice. Annual Review of Condensed Matter Physics, 1(1), 129. https://doi.org/10.1146/annurev-conmatphys-070909-104059

Faúndez, J., Jorge, T. N., Craco, L. (2018). Spin-selective electronic reconstruction in quantum ferromagnets: A view from the spin-asymmetric Hubbard model. Physical Review B, 97(11), 115149. https://doi.org/10.1103/PhysRevB.97.115149

Ferrier-Barbut, I., Delehaye, M., Laurent, S., Grier, A. T., Pierce, M., Rem, B. S., Chevy, F., Salomon, C. (2014). A mixture of Bose and Fermi superfluids. Science, 345(6200), 1035. https://doi.org/10.1126/science.1255380

Frahm, H., Palacios, G. (2005). Correlation functions of one-dimensional Bose-Fermi mixtures. Physical Review A, 72(6), 061604.https://doi.org/10.1103/PhysRevA.72.061604

Fukuhara, T., Sugawa, S., Takasu, Y., Takahashi, Y. (2009). All-optical formation of quantum degenerate mixtures. Physical Review A, 79(2), 021601(R). https://doi.org/10.1103/PhysRevA.79.021601

Fulde, P., Ferrell, R. A. (1964). Superconductivity in a strong spin-exchange field. Physical Review, 135(3A), A550. https://doi.org/10.1103/PhysRev.135.A550

Garcia, D. J., Hallberg, K., Alascio, B., Avignon, M. (2004). Spin order in one-dimensional Kondo and Hund lattices. Physical Review Letters, 93(17), 177204. https://doi.org/10.1103/PhysRevLett.93.177204

Garcia, D. J., Hallberg, K., Batista, C. D., Avignon, M., Alascio, B. (2000). New type of charge and magnetic order in the ferromagnetic Kondo lattice. Physical Review Letters, 65(17), 3720. https://doi.org/10.1103/PhysRevLett.85.3720

Garcia, D. J., Hallberg, K., Batista, C. D., Capponi, S., Poilblanc, D., Avignon, M., Alascio, B. (2002). Charge and spin inhomogeneous phases in the ferromagnetic Kondo lattice model. Physical Review B, 65(13), 134444. https://doi.org/10.1103/PhysRevB.65.134444

Gegenwart, P., Si, Q., Steglich, F. (2008). Quantum criticality in heavy-fermion metals. Nature Physics, 4(3), 186. https://doi.org/10.1038/nphys892

Gorshkov, A.V., Hermele, M., Gurarie, V., Xu, C., Julienne, P.S., Ye, J., Zoller, P., Demler, E., Lukin, M.D., Rey, A.M. (2010). Two-orbital SU(N) magnetism with ultracold alkaline-earth atoms. Nature Physics, 6(4), 289. https://doi.org/10.1038/nphys1535

Gross, C., Bloch, I. (2017). Quantum simulations with ultracold atoms in optical lattices. Science, 357(6355), 995. https://doi.org/10.1126/science.aal3837

Grüner, G. (1988). The dynamics of charge-density waves. Review of Modern Physics, 60(4), 1129. https://doi.org/10.1103/RevModPhys.60.1129

Grüner, G. (1994). The dynamics of spin-density waves. Review of Modern Physics, 66(1), 1. https://doi.org/10.1103/RevModPhys.66.1

Guan, X.-W., Batchelor, M. T., Lee, C. (2013). Fermi gases in one dimension: From Bethe ansatz to experiments. Review of Modern Physics, 85(4), 1633. https://doi.org/10.1103/RevModPhys.85.1633

Guerrero-Suárez, R., Mendoza-Arenas, J. J., Franco, R., Silva-Valencia, J. (2021). Spinselective insulators in Bose-Fermi mixtures. Physical Review A, 103(2), 023304. https://doi.org/10.1103/PhysRevA.103.023304

Gulacsi, M. (2004). The one-dimensional Kondo lattice model at partial band filling. Advances in physics, 53(7), 769. https://doi.org/10.1080/00018730412331313997

Günter, K., Stöferle, T., Moritz, H., Köhl, M., Esslinger, T. (2006). Bose-Fermi mixtures in a three-dimensional optical lattice. Physical Review Letters, 96(18), 180402. https://doi.org/10.1103/PhysRevLett.96.18040219

Hadzibabic, Z., Stan, C. A., Dieckmann, K., Gupta, S., Zwierlein, M. W., Görlitz, A., Ketterle, W. (2002). Two-species mixture of quantum degenerate Bose and Fermi gases. Physical Review Letters, 88(16), 160401. https://doi.org/10.1103/PhysRevLett.88.160401

Hasan, M. Z., Kane, C. L. (2010). Colloquium: Topological insulators. Review of Modern Physics, 82(4), 3045. https://doi.org/10.1103/RevModPhys.82.3045

Hewson, A. (1997). The Kondo Problem to Heavy Fermions. Cambridge University Press. Honerkamp, C., & Hofstetter, W. (2004). Ultracold fermions and the SU(n) Hubbard model. Physical Review Letters, 92(17), 170403. https://doi.org/10.1103/PhysRevLett.92.170403

Honner, G., Gulacsi, M. (1997). One-dimensional Kondo lattice at partial band filling. PhysicalReview Letters, 78(11), 2180. https://doi.org/10.1103/PhysRevLett.78.2180

Ikemachi, T., Ito, A., Aratake, Y., Chen, Y., Koashi, M., Kuwata-Gonokami, M., Horikoshi, M. (2017). All-optical production of dual Bose–Einstein condensates of paired fermions and bosons with 6Li and 7Li. Journal of Physics B: Atomic, Molecular and Optical Physics, 50(1), 01LT01. https://doi.org/10.1088/1361-6455/50/1/01LT01

Imada, M., Fujimori, A., Tokura, Y. (1998). Metal-insulator transitions. Review of Modern Physics, 70(4), 1039. https://doi.org/10.1103/RevModPhys.70.1039

Kinnunen, J. J., Baarsma, J. E., Martikainen, J.-P., Törmä, P. (2018). The Fulde–Ferrell–Larkin–Ovchinnikov state for ultracold fermions in lattice and harmonic potentials: a review. Reports on Progress in Physics, 81(4), 046401. https://doi.org/10.1088/1361-6633/aaa4ad

Larkin, A. I., Ovchinnikov, Y. N. (1964). Nonuniform state of superconductors. Journal of Experimental and Theoretical Physics. (USSR), 47, 1136.

Lewenstein, M., Santos, L., Baranov, M. A., Fehrmann, H. (2004). Atomic Bose-Fermi mixtures in an optical lattice. Physical Review Letters, 92(5), 050401. https://doi.org/10.1103/PhysRevLett.92.050401

Liao, Y., Rittner, A. S. C., Paprotta, T., Li, W., Partridge, G. B., Hulet, R. G., Baur, S.K., Mueller, E. J. (2010). Spin-imbalance in a one-dimensional Fermi gas. Nature, 467(7315), 567. https://doi.org/10.1038/nature09393

Liao, R. (2020). Ultracold bose mixtures with spin-dependent fermion-mediated interactions.Physical Review Research, 2(4), 043218. https://doi.org/10.1103/PhysRevResearch.2.043218

Lous, R. S., Fritsche, I., Jag, M., Lehmann, F., Kirilov, E., Huang, B., Grimm, R. (2018). Probing the interface of a phase-separated state in a repulsive Bose-Fermi mixture. Physical Review Letters, 120(24), 243403. https://doi.org/10.1103/PhysRevLett.120.243403

Lühmann, D.-S., Bongs, K., Sengstock, K., Pfannkuche, D. (2008). Self-trapping of bosons and fermions in optical lattices. Physical Review Letters, 101(5), 050402. https://doi.org/10.1103/PhysRevLett.101.050402

Masaki, A., Mori, H. (2013). Mott transition of Bose–Fermi mixtures in optical lattices induced by attractive interactions. Journal of the Physical Society of Japan, 82(7), 074002. https://doi.org/10.7566/JPSJ.82.074002

Mathey, L., Wang, D.-W. (2007). Phase diagrams of one-dimensional Bose-Fermi mixtures of ultracold atoms. Physical Review A, 75(1), 013612. https://doi.org/10.1103/PhysRevA.75.013612

Mathey, L., Wang, D.-W., Hofstetter, W., Lukin, M. D., Demler, E. (2004). Luttinger liquid of polarons in one-dimensional boson-fermion mixtures. Physical Review Letters, 93(12), 120404. https://doi.org/10.1103/PhysRevLett.93.120404

McCulloch, I. P., Juozapavicius, A., Rosengren, A., Gulacsi, M. (2002). Localized spin ordering in Kondo lattice models. Physical Review B, 65(5), 052410. https://doi.org/10.1103/PhysRevB.65.052410

McNamara, J. M., Jeltes, T., Tychkov, A. S., Hogervorst, W., Vassen, W. (2006). Degenerate Bose-Fermi mixture of metastable atoms. Physical Review Letters, 97(8), 080404. https://doi.org/10.1103/PhysRevLett.97.08040420

Mering, A., Fleischhauer, M. (2008). One-dimensional Bose-Fermi-hubbard model in the heavyfermion limit. Physical Review A, 77(2), 023601. https://doi.org/10.1103/PhysRevA.77.023601

Mering, A., Fleischhauer, M. (2010). Fermion-mediated long-range interactions of bosons in the one-dimensional Bose-Fermi-hubbard model. Physical Review A, 81(1), 011603(R). https://doi.org/10.1103/PhysRevA.81.011603

Mizukami, Y., Shishido, H., Shibauchi, T., Shimozawa, M., Yasumoto, S., Watanabe, D., Yamashita, M., Ikeda, H., Terashima, T., Kontani, H., Matsuda, Y. (2011). Extremely strong-coupling superconductivity in artificial two-dimensional Kondo lattices. Nature Physics, 7(11), 849. https://doi.org/10.1038/nphys2112

Mott, N. F. (1968). Metal-insulator transition. Review of Modern Physics, 40(4), 677. https://doi.org/10.1103/RevModPhys.40.677

Nakagawa, M., Kawakami, N. (2017). Symmetry-protected topological phase transition in onedimensional Kondo lattice and its realization with ultracold atoms. Physical Review B, 96(15), 155133. https://doi.org/10.1103/PhysRevB.96.155133

Nonne, H., Boulat, E., Capponi, S., Lecheminant, P. (2011). Phase diagram of one-dimensional earth-alkaline cold fermionic atoms. Modern Physics Letters B, 25(12n13), 955. https://doi.org/10.1142/S0217984911026668

Ono, K., Kobayashi, J., Amano, Y., Sato, K., Takahashi, Y. (2019). Antiferromag- netic interorbital spin-exchange interaction of 171Yb. Physical Review A, 99(3), 032707. https://doi.org/10.1103/PhysRevA.99.032707

Onofrio, R. (2016). Physics of our days: Cooling and thermometry of atomic Fermi gases. Physics–Uspekhi, 59(11), 1129. https://doi.org/10.3367/UFNe.2016.07.037873

Orignac, E., Tsuchiizu, M., Suzumura, Y. (2010). Competition of superfluidity and density waves in one-dimensional Bose-Fermi mixtures. Physical Review A, 81(5), 053626. https://doi.org/10.1103/PhysRevA.81.053626

Orth, P. P., Bergman, D. L., Hur, K. L. (2009). Supersolidity of cold-atom Bose-Fermi mixtures in optical lattices. Physical Review A, 80(2), 023624. https://doi.org/10.1103/PhysRevA.80.023624

Ospelkaus, S., Ospelkaus, C., Wille, O., Succo, M., Ernst, P., Sengstock, K., Bongs, K. (2006). Localization of bosonic atoms by fermionic impurities in a three-dimensional optical lattice. Physical Review Letters, 96(18), 180403. https://doi.org/10.1103/PhysRevLett.96.180403

Ott, H., de Mirandes, E., Ferlaino, F., Roati, G., Modugno, G., Inguscio, M. (2004). Collisionally induced transport in periodic potentials. Physical Review Letters, 92(16), 160601. https://doi.org/10.1103/PhysRevLett.92.160601

Ozawa, T., Recati, A., Delehaye, M., Chevy, F., Stringari, S. (2014). Chandrasekhar-Clogston limit and critical polarization in a Fermi-Bose superfluid mixture. Physical Review A, 90(4),043608. https://doi.org/10.1103/PhysRevA.90.043608

Pai, R. V., Pandit, R., Krishnamurthy, H. R., Ramasesha, S. (1996). One-dimensional disordered bosonic Hubbard model: A density-matrix renormalization group study. Physical Review Letters, 76(16), 2937. https://doi.org/10.1103/PhysRevLett.76.2937

Partridge, G. B., Li, W. H., Kamar, R. I., Liao, Y. A., Hulet, R. G. (2006). Pairing and phase separation in a polarized Fermi gas. Science, 311(5760), 503. https://doi.org/10.1126/science.1122876

Peters, R., Kawakami, N. (2012). Ferromagnetic state in the one-dimensional Kondo lattice model. Physical Review B, 86(16), 165107. https://doi.org/10.1103/PhysRevB.86.165107

Peters, R., Kawakami, N., Pruschke, T. (2012). Spin-selective Kondo insulator: Cooperation of ferromagnetism and the Kondo effect. Physical Review Letters, 108(8), 086402. https://doi.org/10.1103/PhysRevLett.108.086402

Polak, T. P., Kopeć, T. K. (2010). Zero-temperature phase diagram of Bose-Fermi gaseous mixtures in optical lattices. Physical Review A, 81(4), 043612.21. https://doi.org/10.1103/PhysRevA.81.043612

Pollet, L., Troyer, M., Houcke, K. V., Rombouts, S. (2006). Phase diagram of Bose-Fermi mixtures in one-dimensional optical lattices. Physical Review Letters, 96(19), 190402. https://doi.org/10.1103/PhysRevLett.96.190402 Qi, X.-L., Zhang, S.-C. (2011). Topological insulators and superconductors. Review of Modern Physics, 83(4), 1057. https://doi.org/10.1103/RevModPhys.83.1057

Riegger, L., Oppong, N. D., Höfer, M., Fernandes, D. R., Bloch, I., Fölling, S. (2018). Localized magnetic moments with tunable spin exchange in a gas of ultracold fermions. Physical Review Letters, 120(14), 143601. https://doi.org/10.1103/PhysRevLett.120.143601

Rizzi, M., Imambekov, A. (2008). Pairing of one-dimensional Bose-Fermi mixtures with unequal masses. Physical Review A, 77(2), 023621. https://doi.org/10.1103/PhysRevA.77.023621

Roati, G., Riboli, F., Modugno, G., Inguscio, M. (2002). Fermi-Bose quantum degenerate 40K-87Rb mixture with attractive interaction. Physical Review Letters, 89(15), 150403. https://doi.org/10.1103/PhysRevLett.89.150403

Rossini, D., Fazio, R. (2012). Phase diagram of the extended Bose–Hubbard model. New Journal of Physics, 14(6), 065012. https://doi.org/10.1088/1367-2630/14/6/065012

Roth, R., Burnett, K. (2004). Quantum phases of atomic boson-fermion mixtures in optical lattices. Physical Review A, 69(2), 021601. https://doi.org/10.1103/PhysRevA.69.021601

Roy, R., Green, A., Bowler, R., Gupta, S. (2017). Two-element mixture of Bose and Fermi superfluids. Physical Review Letters, 118(5), 055301. https://doi.org/10.1103/PhysRevLett.118.055301

Schäfer, F., Mizukami, N., Yu, P., Koibuchi, S., Bouscal, A., Takahashi, Y. (2018). Experimental realization of ultracold yb-7Li mixtures in mixed dimensions. Physical Review A, 98(5), 051602(R). https://doi.org/10.1103/PhysRevA.98.051602

Schreck, F., Khaykovich, L., Corwin, K. L., Ferrari, G., Bourdel, T., Cubizolles, J., Salomon, C. (2001). Quasipure Bose-Einstein condensate immersed in a Fermi sea. Physical Review Letters, 87(8), 080403. https://doi.org/10.1103/PhysRevLett.87.080403

Schuster, T., Scelle, R., Trautmann, A., Knoop, S., Oberthaler, M. K., Haverhals, M. M., Goosen, M.R., Kokkelmans, S.J.J.M.F., Tiemann, E. (2012). Feshbach spectroscopy and scattering properties of ultracold Li + Na mixtures. Physical Review A, 85(4), 042721. https://doi.org/10.1103/PhysRevA.85.042721

Sengupta, K., Dupuis, N., Majumdar, P. (2007). Bose-Fermi mixtures in an optical lattice. Physical Review A, 75(6), 063625. https://doi.org/10.1103/PhysRevA.75.063625

Shibata, N., Ueda, K. (1999). The one-dimensional Kondo lattice model studied by the density matrix renormalization group method. Journal of Physics: Condensed Matter, 11(2), R1. https://doi.org/10.1088/0953-8984/11/2/002

Shimozawa, M., Goh, S. K., Shibauchi, T., Matsuda, Y. (2016). From Kondo lattices to Kondo superlattices. Reports on Progress in Physics, 79(7), 074503. https://doi.org/10.1088/0034-4885/79/7/074503

Shishido, H., Shibauchi, T., Yasu, K., Kato, T., Kontani, H., Terashima, T., Matsuda, Y. (2010). Tuning the dimensionality of the heavy fermion compound CeIn3. Science, 327(5968), 980. https://doi.org/10.1126/science.1183376

Silber, C., Günther, S., Marzok, C., Deh, B., Courteille, P. W., Zimmermann, C. (2005). Quantum-degenerate mixture of fermionic lithium and bosonic rubidium gases. Physical Review Letters, 95(17), 170408. https://doi.org/10.1103/PhysRevLett.95.170408

Silva-Valencia, J., Miranda, E. (2001). Magnetization plateaus and luttinger liquid behavior in XXZ chains with superlattice structure. Physical Review B, 65(2), 024443. https://doi.org/10.1103/PhysRevB.65.02444322

Silva-Valencia, J., Miranda, E., Santos, R. R. D. (2001). Luttinger liquid superlattices. J. Phys.: Condens. Matter, 13(27), L619. https://doi.org/10.1088/0953-8984/13/27/102

Silva-Valencia, J., Souza, A. M. C. (2012a). Entanglement of alkaline-earth-metal fermionic atoms confined in optical lattices. Physical Review A, 85(3), 033612. https://doi.org/10.1103/PhysRevA.85.033612

Silva-Valencia, J., Souza, A. M. C. (2012b). Ground state of alkaline-earth fermionic atoms in one-dimensional optical lattices. The European Physical Journal B, 85(1), 5. https://doi.org/10.1140/epjb/e2011-20671-2

Singh, M., Orso, G. (2020). Enhanced visibility of the Fulde-Ferrell-Larkin-Ovchinnikov state in one-dimensional Bose-Fermi mix-tures near the immiscibility point. Physical Review Research, 2(2), 023148. https://doi.org/10.1103/PhysRevResearch.2.023148

Sinha, S., Sengupta, K. (2009). Phases and collective modes of a hardcore Bose-Fermi mixture in an optical lattice. Physical Review B, 79(11), 115124. https://doi.org/10.1103/PhysRevB.79.115124

Sugawa, S., Inaba, K., Taie, S., Yamazaki, R., Yamashita, M., Takahashi, Y. (2011). Interaction and filling-induced quantum phases of dual Mott insulators of bosons and fermions. Nature Physics, 7(8), 642. https://doi.org/10.1038/nphys2028Suzuki, K., Miyakawa, T., Suzuki, T. (2008). p-wave superfluid and phase separation in atomic Bose-Fermi mixtures. Physical Review A, 77(4), 043629. https://doi.org/10.1103/PhysRevA.77.043629

Takasu, Y., Takahashi, Y. (2009). Quantum degenerate gases of ytterbium atoms. J. Phys. Soc. Jpn., 78(1), 012001. https://doi.org/10.1143/JPSJ.78.012001 Takeuchi, Y., & Mori, H. (2005). Mixing-demixing transition in one-dimensional boson-fermion mixtures. Physical Review A, 72(6), 063617. https://doi.org/10.1103/PhysRevA.72.063617

Tey, M. K., Stellmer, S., Grimm, R., Schreck, F. (2010). Double-degenerate Bose-Fermi mixture of strontium. Physical Review A, 82(1), 011608(R). https://doi.org/10.1103/PhysRevA.82.011608

Trautmann, A., Ilzhöfer, P., Durastante, G., Politi, C., Sohmen, M., Mark, M. J., Ferlaino, F. (2018). Dipolar quantum mixtures of erbium and dysprosium atoms. Physical Review Letters, 121(21), 213601. https://doi.org/10.1103/PhysRevLett.121.213601

Truscott, A. G., Strecker, K. E., McAlexander, W. I., Partridge, G. B., Hulet, R. G. (2001). Observation of Fermi pressure in a gas of trapped atoms. Science, 291(5513), 2570. https://doi.org/10.1126/science.1059318

Tsunetsugu, H., Sigrist, M., Ueda, K. (1997). The ground-state phase dia-gram of the onedimensional Kondo lattice model. Review of Modern Physics, 69(3), 809. https://doi.org/10.1103/RevModPhys.69.809

Tung, S. K., Parker, C., Johansen, J., Chin, C., Wang, Y., Julienne, P. S. (2013). Ultracold mixtures of atomic 6Li and 133Cs with tunable interactions. Physical Review A, 87(1), 010702(R). https://doi.org/10.1103/PhysRevA.87.010702

Vaidya, V. D., Tiamsuphat, J., Rolston, S. L., Porto, J. V. (2015). Degenerate Bose-Fermi mixtures of rubidium and ytterbium. Physical Review A, 92(4), 043604. https://doi.org/10.1103/PhysRevA.92.043604

Wu, Y.-P., Yao, X.-C., Chen, H.-Z., Liu, X.-P., Wang, X.-Q., Chen, Y.-A., Pan, J.-W. (2017). Aquantum degenerate Bose–Fermi mixture of 41K and 6Li. Journal of Physics B: Atomic, Molecular and Optical Physics, 50(9), 094001. https://doi.org/10.1088/1361-6455/aa658b

Xavier, J. C., Pereira, R. G., Miranda, E., Affleck, I. (2003). Dimerization induced by the RKKY interaction. Physical Review Letters, 90(24), 247204. https://doi.org/10.1103/PhysRevLett.90.247204

Yan, B., Felser, C. (2017). Topological materials: Weyl semimetals. Annual Review of Condensed

Matter Physics, 8(1), 337. https://doi.org/10.1146/annurev-conmatphys-031016-23025458

Yao, X.-C., Chen, H.-Z., Wu, Y.-P., Liu, X.-P., Wang, X.-Q., Jiang, X., Deng, Y., Chen, Y-A., Pan, J.-W. (2016). Observation of coupled vortex lattices in a massimbalance Bose and Fermi superfluid mixture. Physical Review Letters, 117(14), 145301. https://doi.org/10.1103/PhysRevLett.117.145301

Yi, M., Liu, Z.-K., Zhang, Y., Yu, R., Zhu, J.-X., Lee, J., Moore, R.G., Schmitt, F.T., Li, W., Riggs, S.C., Chu, J.-H., Lv, B., Hu, H., Hashimoto, M., Mo, S.-K., Hussain, Z., Mao, ZQ., Chu, C.W., Fisher, I.R., Si, Q., Shen, Z.-X., Lu, D. (2015). Observation of universal strong orbital-dependent correlation effects in iron chalcogenides. Nature Communications, 6(1), 7777. https://doi.org/10.1038/ncomms8777

Yin, X., Chen, S., Zhang, Y. (2009). Yang-Yang thermodynamics of a Bose-Fermi mixture. Physical Review A, 79(5), 053604. https://doi.org/10.1103/PhysRevA.79.053604

Zaccanti, M., D’Errico, C., Ferlaino, F., Roati, G., Inguscio, M., Modugno, G. (2006). Control of the interaction in a Fermi-Bose mixture. Physical Review A, 74(4), 041605(R). https://doi.org/10.1103/PhysRevA.74.041605

Zujev, A., Baldwin, A., Scalettar, R. T., Rousseau, V. G., Denteneer, P. J. H., Rigol, M. (2008). Superfluid and Mott-insulator phases of one-dimensional Bose-Fermi mixtures. Physical Review A, 78(3), 033619. https://doi.org/10.1103/PhysRevA.78.033619

Zwierlein, M. W., Schirotzek, A., Schunck, C. H., Ketterle, W. (2006). Fermionic superfluidity with imbalanced spin populations. Science, 311(5760), 492. https://doi.org/10.1126/science.1122318

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2022 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales