Sobre una función logarítmica de Mittag-Leffler, sus propiedades y aplicaciones
PDF (English)

Cómo citar

Pathan, M. ., & Kumar, H. . (2021). Sobre una función logarítmica de Mittag-Leffler, sus propiedades y aplicaciones. RACCEFYN, 45(176), 901–915.


Los datos de descargas todavía no están disponibles.

Métricas Alternativas


En este artículo, presentamos una función logarítmica de Mittag-Leffler y discutir algunas de sus propiedades. La aplicación de estas propiedades se vuelven útiles en la extensión de la integral de contorno de tipo de Pochhammer representaciones y fórmulas de Rodrigues de algunos conocidos hipergeompétricos funciones. Desde el punto de vista de la aplicación, se discuten algunas relaciones que son útiles para interpretar el fenómeno de la  propagación de infecciones enfermedades en términos de las múltiples funciones hipergeométricas de Lauricella.

Palabras clave

Orden complejo derivada | Integrales de tipo de Pochhammer extendidas | Fórmulas de Rodrigues | funciones hipergeométricas | Porpagación de enfermedades infecciosas | Función logarítmica de Mittag-Leffler
PDF (English)


Campos, L. M. B. C. (1984). On a concept of derivative of complex order with applications to special functions. IMA J. Appl. Math., 33(), 109–133.

Caponetto, R., Dongola, G., & L. Fortuna, I. P. (2010). Fractional order systems: Modeling and control applications. World Scientific, Singapore.

Chandel, R. C. S., Agrawal, R. D., & Kumar, H. (1993). Velocity coefficient of chemical reaction and lauricella’s function f (n),. Math. Student, 62(1–4), 93–96.

Conway, J. B. (1973). Functions of one complex variable. Springer International Student Edition, Springer-Verlag.

Diethelm, K. (2010). The analysis of differential equations of fractional order: An application-oriented exposition using differential operators of caputo type, lecture notes in mathematics (Vol. 2004). Springer Verlag: Berlin-Heidelberg, Germany.

Dzherbashian, M. M. (1966). Integral transforms and representation of functions in the complex domain. Nauka: Moscow, Russian, (In Russian).

ErdImagelyi, A., Magnus, W., Oberhettinger, F., & Tricomi, F. G. (1953). Higher transcendental functions (Vol. I). McGraw-Hill, New York.

Exton, H. (1976). Multiple hypergeometric functions and applications. Ellis Horwood Limited, England.

Gorenflo, R., Kilbas, A. A., Mainardi, F., & Rogosin, S. (2014). Mittag-leffler functions, related topics and applications. Springer-Verlag:Berlin-Heidelberg, Geramny.

Gorenflo, R., Loutchko, J., & Luchko, Y. (2002). Computation of the mittag - leffler function image. Fract. Calc. Appl. Anal., 5(4), 491–518.14

Gorenflo, R., Luchko, Y., & Mainardi, F. (1999). Analytical properties and applications of the wright function. Fract. Calc. Appl. Anal., 2(), 383–414.

Gorenflo, R., Mainardi, F., & Srivastava, H. M. (1998). Special functions in fractional relaxation oscillation and fractional diffusion-wave phenomena. VSP Publishers: Utrecht, The Netherlands; Tokyo, Japan.

Hilfer, R. E. (2000). Applications of fractional calculus in physics. World Scientific: Singapore.

Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and applications of fractional differential equations (Vol. 204). Elsevier: Amsterdam, The Netherlands.

Kiryakova, V. (1999). Multi-index mittag-leffler functions, related gelfond- leontiev operators and laplace type integral transforms. Fract. Calc. Appl. Anal., 2(), 445–462.

Kiryakova, V., & Luchko, Y. (2010). The multi-index mittag-leffler functions and their applications for solving fractional order problems in applied analysis. in application of mathematics in technical and natural sciences (cp1301, amitans’10); todorov, m.d., christov, c.i., eds. American Institute of Physics: Melville, NY, USA.

Mathai, A. M., & Haubold, H. J. (2008). Special functions for applied scientists. Springer, New York.

Mittag-Leffler, G. M. (1903). Sur la nonvelle function e.(x). C. R. Acad. Paris, 137(),554–558.

Oldham, K. B., & Spanier, J. (2006). The fractional calculus, theory and applications of differentiation and integration to arbitrary order. Dover Publication, Inc., New York.

Osler, T. J. (1972). A further extension of the leibniz rule to fractional derivatives and its relation to parseval’s formula. SIAM J., Math. Anal., 3(1), 1–16.

Pathan, M. A., & Kumar, H. (2019). Generalized multivariable cauchy residue theorem and nonzero zeros of multivariable and multi-parameters generalized mittag-leffler functions. Southeast Asian Bull. Math., 43(), 733–749.

Peng, J., & Li, K. (2010). A note on property of the mittag-leffler function. J. Math. Anal. Appl., 370(), 635–638.

Podlubny, I. (1999). Fractional differential equations. Academic Press: New York, NY,USA.

Rogosin, S. (2015). The role of the mittag - leffler function in fractional modeling. Mathematics, 3(), 368-381.

Samko, S. G., Kilbas, A. A., & Marichev, O. I. (1993). Fractional integrals and derivatives:Theory and applications.

Shukla, A. K., & Prajapati, J. C. (2007). On a generalization of mittag-leffler function and its properties. J. Math. Anal. Appl., 336(), 797–811.

Srivastava, B. L., Pathan, M. A., & Kumar, H. (2020). An abelian group of a class of mittag - leffler functions. Romanian J. Math. Comput. Sci., 10(1)(), 67–72.

Srivastava, H. M., & Manocha, H. L. (1984). A treatise on generating functions. John Wiley and Sons, New York.

Steele, J. M. (2004). The cauchy - schwarz master class; a introduction to the art of mathematical inequalities. Cambridge University Press Cambridge, New York.

Wiman, A. (1905). Uber den fundamental saiz in der theorie der funktionen image. Acta.Math., 29(), 191–201. 15

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2021 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales