Síntesis de recubrimientos nanoestructurados de (Ti-Zr-Si)N depositados sobre aleación de Ti6Al4V
PDF

Archivos suplementarios

Figure 1S
Supplementary figure 1
Supplementary figure 2

Cómo citar

Cardenas-Flechas, L. J., Mejía-Villagran, C. P., Rincon-Joya, M., & Olaya-Florez, J. J. (2021). Síntesis de recubrimientos nanoestructurados de (Ti-Zr-Si)N depositados sobre aleación de Ti6Al4V. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat., 45(175), 570-581. https://doi.org/10.18257/raccefyn.1198

Descargas

La descarga de datos todavía no está disponible.
Crossref
Citas en Scopus
Perfil en Google Scholar
Citado por:

Métricas Alternativas

Resumen

Los recubrimientos de TiZrSiN tienen aplicaciones importantes como barreras contra la corrosión y estabilizadores térmicos. La adición de Si en las películas de TiZrN ayuda a aumentar la dureza y la estabilidad térmica del recubrimiento base. En este trabajo, películas delgadas de (Ti-Zr-Si)N fueron depositadas sobre la aleación de Ti6Al4V mediante la técnica de co-sputtering utilizando blancos de Ti5Si2 y Zr. La síntesis de los recubrimientos se realizó variando la potencia de descarga en la fuente RF encargada del blanco de Ti5Si2 a 130W, 150W y 170W, así como una variación en la temperatura de depósito a temperatura ambiente, 130° y 260°C. Los recubrimientos fueron caracterizados por medio de difracción de rayos X (XRD), donde se evidencia la formación de la fase que pertenece a la solución sólida (Zr,Ti)N, microscopía electrónica de barrido (SEM), espectroscopia UV-Vis y ensayos de dureza y pin-on-disc. El espesor fue medido a través de interferometría con valores entre 662 y 481nm para los recubrimientos depositados. De acuerdo con el mecanismo de falla en el ensayo de rayado, los mejores resultados obtenidos se dieron para una potencia de 170W y 260°C con una falla cohesiva Lc1=2.1N y una falla adhesiva Lc2=4.7N.

Palabras clave

(Ti-Zr-Si)N
Ti6Al4V
Recubrimientos
Co-sputtering
Nanoestructuras
https://doi.org/10.18257/raccefyn.1198
PDF

Referencias

Abadias, G., Daniliuk, A. Y., Solodukhin, I. A., Uglov, V. V., & Zlotsky, S. V. (2018). Thermal stability of TiZrAlN and TiZrSiN films formed by reactive magnetron sputtering. InorganicMaterials: Applied Research. 9 (3): 418-426. doi.org/10.1134/S2075113318030024

Abadias, G., Koutsokeras, L. E., Dub, S. N., Tolmachova, G. N., Debelle, A., Sauvage, T., & Villechaise, P. (2010). Reactive magnetron cosputtering of hard and conductive ternary nitride thin films: Ti–Zr–N and Ti–Ta–N. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 28 (4): 541-551. doi.org/10.1116/1.3426296

Abrikosov, I. A., Knutsson, A., Alling, B., Tasnádi, F., Lind, H., Hultman, L., & Odén, M. (2011). Phase stability and elasticity of TiAlN. Materials. 4 (9): 1599-1618. doi.org/10.3390/ma4091599.

Attari, V., Cruzado, A., & Arroyave, R. (2019). Exploration of the microstructure space in TiAlZrN ultra-hard nanostructured coatings. Acta Materialia. doi.org/10.1016/j.actamat.2019.05.047.

Baturina, O. A., Epshteyn, A., Purdy, A., Simpkins, B., Forcherio, G. T., & Govorov, A. O. (2019). Comparison of Photocatalytic Activities of TiN and Zrn Nanoparticles Incorporated into TiO2 matrix Under Visible Excitation. In Meeting Abstracts (No. 45, pp. 2072-2072). The Electrochemical Society.

Bendavid, A., Martin, P. J., Kinder, T. J., & Preston, E. W. (2003). Properties of Ti1-xSixNy films deposited by concurrent cathodic arc evaporation and magnetron sputtering. Surf. Coat. Technol, 163-164. doi.org/10.1016/S0257-8972(02)00491-7.

Bisbal, R., Dávila, P., Gomez, F., Camero, S., Pérez, M., & González, G. (2012). Efecto del Ta en la aleación Ti-6Al-4V tratada térmicamente. Revista de la Facultad de Ingeniería Universidad Central de Venezuela, 27 (4): 83-94.

Cardenas Flechas, L. J. (2018). Resistencia a la corrosión de recubrimientos nanoestructurados de Ti-Zr-Si-N. Ingeniería Mecánica.Universidad Nacional de Colombia. Retrieved from: https://repositorio.unal.edu.co/handle/unal/69879.

Cardenas, J., Leon, J., & Olaya, J. J. (2019). Synthesis and high-temperature corrosion resistance of Ti-Zr-Si-N coatings deposited by means of sputtering. Corrosion Engineering, Science and Technology, 54 (3): 233-240. doi.org/10.1080/1478422X.2019.1573498.

Cardenas, L. J. C., Barahona, E. T., Salamanca, M. L. P., Medina, J. X. L., & Florez, J. J. O. (2018). Evaluación de la resistencia a la oxidación de peliculas de Ti-Zr-Si-N producidas por cosputtering. Bistua Revista de la facultad de ciencias básicas. 15 (2). doi. org/10.24054/01204211.v2.n2.2017.2889.

Cardenas L., Raba, A. M., Barba-Ortega, J., Moreno, L. C., & Joya, M. R. (2021). Effect of Calcination Temperature on the Behavior of the Agglomerated Co3O4 Nanoparticles Obtained Through the Sol–Gel Method. Journal of Inorganic and Organometallic Polymers and Materials. 31 (1): 121-128. doi.org/10.1007/s10904-020-01685-5

Cardenas-Flechas, L. J., Raba, A. M., & Rincón-Joya, M. (2020). Synthesis and evaluation of nickel doped Co3O4 produced through hydrothermal technique. Dyna. 87 (213): 184-191. doi. org/10.15446/dyna.v87n213.84410

Ding, X. Z., Tan, A. L. K., Zeng, X. T., Wang, C., Yue, T., & Sun, C. Q. (2008). Corrosion resistance of CrAlN and TiAlN coatings deposited by lateral rotating cathode arc. Thin Solid Films. 516 (16): 5716-5720. doi.org/10.1016/j.tsf.2007.07.069

Escobar, D., Ospina, R., Gómez, A. G., & Restrepo-Parra, E. (2015). Microstructure, residual stress and hardness study of nanocrystalline titanium–zirconium nitride thin films. Ceramics International. 41 (1): 947-952. doi.org/10.1016/j.ceramint.2014.09.012

Georgson, M., Roos, A., & Ribbing, C. G. (1991). The influence of preparation conditions on the optical properties of titanium nitride based solar control films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 9 (4): 2191-2195. doi.org/10.1116/1.577249.

Guler, U., Boltasseva, A., & Shalaev, V. M. (2014). Refractory plasmonics. Science. 344 (6181): 263-264. doi: 10.1126/science.1252722

Huang, J. H., Ho, C. H., & Yu, G. P. (2007). Effect of nitrogen flow rate on the structure and mechanical properties of ZrN thin films on Si (1 0 0) and stainless steel substrates. Materials chemistry and physics. 102 (1): 31-38. doi.org/10.1016/j.matchemphys.2006.10.007

Kameneva, A., & Kichigin, V. (2019). Corrosion, wear, and friction behavior of a number of multilayer two-, three-and multicomponent nitride coatings on different substrates, depending on the phase and elemental composition gradient. Applied Surface Science. doi.org/10.1016/j.apsusc.2019.05.331

Kiryukhantsev-Korneev, F. V., Shirmanov, N. A., Sheveiko, A. N., Levashov, E. A., Petrzhik, M. I., & Shtanskii, D. V. (2010). Nanostructural wear-resistant coatings produced on metalcutting tools by electric-arc evaporation and magnetronic sputtering. Russian Engineering Research. 30 (9): 910-920. https://doi.org/10.3103/S1068798X10090133

Klamchuen, A., Suzuki, M., Nagashima, K., Yoshida, H., Kanai, M., Zhuge, F., & Kawai, T. (2015). Rational concept for designing vapor–liquid–solid growth of single crystalline metal oxide nanowires. Nano letters. 15 (10): 6406-6412. doi.org/10.1021/acs.nanolett.5b01604

Köpf, A., Keckes, J., Todt, J., Pitonak, R., & Weissenbacher, R. (2017). Nanostructured coatings for tooling applications. International Journal of Refractory Metals and Hard Materials. 62:219-224. doi.org/10.1016/j.ijrmhm.2016.06.017

Lawal, J., Kiryukhantsev-Korneev, P., Matthews, A., & Leyland, A. (2017). Mechanical properties and abrasive wear behaviour of Al-based PVD amorphous/nanostructured coatings. Surface and Coatings Technology. 310: 59-69. doi.org/10.1016/j.surfcoat.2016.12.031

Lin, Y. W., Huang, J. H., Yu, G. P., Hsiao, C. N., & Chen, F. Z. (2015). Influence of ion bombardment on structure and properties of TiZrN thin film. Applied Surface Science. 354: 155-160. https://doi.org/10.1016/j.apsusc.2015.02.190

Ma, S. L., Ma, D. Y., Guo, Y., Xu, B., Wu, G. Z., Xu, K. W., & Chu, P. K. (2007). Synthesis and characterization of super hard, self-lubricating Ti–Si–C–N nanocomposite coatings. Acta Materialia. 55 (18): 6350-6355. doi.org/10.1016/j.actamat.2007.07.046

Macias, H. A., Yate, L., Coy, L. E., Aperador, W., & Olaya, J. J. (2019). Influence of Si-addition on wear and oxidation resistance of TiWSixN thin films. Ceramics International. 45 (14): 17363-17375. doi.org/10.1016/j.ceramint.2019.05.295

Mikula, M., Roch, T., Plašienka, D., Satrapinskyy, L., Švec Sr, P., Vlčková, D., & Kúš, P. (2014). Thermal stability and structural evolution of quaternary Ti–Ta–B–N coatings. Surface and Coatings Technology. 259: 698-706. doi.org/10.1016/j.surfcoat.2014.10.009

Miletić, A., Panjan, P., Škorić, B., Čekada, M., Dražič, G., & Kovač, J. (2014). Microstructure and mechanical properties of nanostructured Ti–Al–Si–N coatings deposited by magnetron sputtering. Surface and Coatings Technology. 241: 105-111. doi.org/10.1016/j.surfcoat.2013.10.050

Moshtaghioun, B. M., Gómez-García, D., & Domínguez-Rodríguez, A. (2018). Spark plasma sintering of titanium nitride in nitrogen: Does it affect the sinterability and the mechanical properties. Journal of the European Ceramic Society. 38 (4): 1190-1196. doi.org/10.1016/j.jeurceramsoc.2017.12.029

Nakayama, H., & Ozaki, K. (2015). Effect of mechanical milling of elemental powders on interface formation in TiN–Ni cermets prepared by pulsed current sintering. International Journal of Refractory Metals and Hard Materials. 51: 309-314. doi.org/10.1016/j.ijrmhm.2015.05.007

Olaya, J. J., Capote, G., & Marulanda. (2015). Producción, caracterizaciòn y aplicaciones de recubrimientos producidos por plasma. Universidad Nacional de Colombia. 1ra ed.

Parra JP, Piamba OE, Olaya JJ. (2015). Resistencia a la corrosión a alta temperatura en películas delgadas de Bix Tiy Oz producidas por sputtering R. F. Revista Latinoamericana de Metalurgia y Materiales. 36: 2-8.

Phaengam, W., Horprathum, M., Chananonnawathorn, C., Lertvanithphol, T., Samransuksamer, B., Songsiriritthigul, P., & Chaiyakun, S. (2019). Oblique angle deposition of nanocolumnar TiZrN films via reactive magnetron co-sputtering technique: The influence of the Zr target powers. Current Applied Physics. 19 (8): 894-901. doi.org/10.1016/j.cap.2019.05.002

Pogrebnjak, A. D., Shpak, A. P., Beresnev, V. M., Kolesnikov, D. A., Kunitskii, Y. A., Sobol, O. V., ... & Demyanenko, A. A. (2012). Effect of thermal annealing in vacuum and in air on nanograin sizes in hard and superhard coatings Zr–Ti–Si–N. Journal of Nanoscience and Nanotechnology. 12 (12): 9213-9219. doi.org/10.1166/jnn.2012.6777

Rizzo, A., Signore, M. A., Penza, M., Tagliente, M. A., De Riccardis, F., & Serra, E. (2006). RF sputtering deposition of alternate iN/ZrN multilayer hard coatings. Thin Solid Films. 515 (2): 500-504. doi.org/10.1016/j.tsf.2005.12.279

Romero, E. C., Osorio, J. C., Soto, R. T., Macías, A. H., & Botero, M. G. (2019). Microstructure, mechanical and tribological performance of nanostructured TiAlTaN-(TiAlN/TaN) n coatings: Understanding the effect of quaternary/multilayer volume fraction. Surface and Coatings Technology. 377: 124875. doi.org/10.1016/j.surfcoat.2019.07.086

Saladukhin, I. A., Abadias, G., Michel, A., Uglov, V. V., Zlotski, S. V., Dub, S. N., & Tolmachova, G. N. (2015). Structure and hardness of quaternary TiZrSiN thin films deposited by reactive magnetron co-sputtering. Thin Solid Films. 581: 25-31. doi.org/10.1016/j.tsf.2014.11.020

Pogrebnyak, A. D., & Beresnev, V. M. (2011). Effect of the preparation conditions on the phase composition, structure, and mechanical characteristics of vacuum-Arc Zr-Ti-Si-N coatings. The Physics of Metals and Metallography. 112 (2): 188. doi.org/10.1134/S0031918X11020268

Uglov, V. V., Abadias, G., Zlotski, S. V., Saladukhin, I. A., Skuratov, V. A., Leshkevich, S. S., & Petrovich, S. (2015). Thermal stability of nanostructured TiZrSiN thin films subjected to helium ion irradiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 354: 264-268. doi.org/10.1016/j.nimb.2014.12.043

Vanegas, H. S., Alfonso, J. E., & Olaya, J. J. (2019). Effect of Si content on functional behavior of nanostructured coatings of Zr–Si–N. Materials Research Express. 6 (11): 115076.

Veszelei, M., Andersson, K., Ribbing, C. G., Järrendahl, K., & Arwin, H. (1994). Optical constants and Drude analysis of sputtered zirconium nitride films. Applied optics. 33 (10): 1993-2001. doi.org/10.1364/AO.33.001993

Yalamanchili, K., Forsén, R., Jiménez-Piqué, E., Jöesaar, M. J., Roa, J. J., Ghafoor, N., & Odén, M. (2014). Structure, deformation and fracture of arc evaporated Zr–Si–N hard films. Surface and Coatings Technology. 258: 1100-1107. 10.1016/j.surfcoat.2014.07.024

Creative Commons License

Esta obra está bajo licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Derechos de autor 2021 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales