Reconstrucción de campos multivectoriales a partir del análisis de Clifford
PDF

Cómo citar

Abreu-Blaya, R., Bory-Reyes, J., Moreno-García, T., & Alfonso-Santiesteban, D. (2024). Reconstrucción de campos multivectoriales a partir del análisis de Clifford. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 48(188), 671–686. https://doi.org/10.18257/raccefyn.2644

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

El análisis de Clifford tiene muchas aplicaciones inesperadas en geometría diferencial y análisis global. Es el caso del tratamiento efectivo de las rotaciones en espacios euclidianos de alta dimensión mediante los grupos espinoriales, uno de los cuales es el grupo de Lorentz de la relatividad especial. En el presente estudio se aborda la reconstrucción de campos multivectoriales a partir del salto que estos experimentan sobre una superficie de geometría suficientemente irregular en espacios euclidianos. Además, se presentan algunos problemas de frontera para ecuaciones de Dirac de segundo orden que no quedan bien planteados si se consideran bases ortonormales diferentes a la base estándar.

https://doi.org/10.18257/raccefyn.2644

Palabras clave

Análisis de Clifford | Campos multivectoriales | Operadores de Dirac | Problemas de frontera
PDF

Citas

Blaya, R. A. (1999). Generalizaciones del Problema de Contorno de Riemann en espacios de Hölder [Tesis Doctoral en Matemáticas, Universidad de Oriente].

Blaya, R. A., García, T. M., & Reyes, J. B. (2012). The sharpness of condition for solving the jump problem. Communications in Mathematical Analysis, 12(2), 26–33.

Blaya, R. A., & Reyes, J. B. (1999). Boundary value problems for quaternionic monogenic functions on non-smooth surfaces. Advances in Applied Clifford Algebras, 9(1), 1–22.

Blaya, R. A., Reyes, J. B., Adán, A. G., & Kähler, U. (2016). On the Π-operator in Clifford analysis. Journal of Mathematical Analysis and Applications, 434, 1138–1159.

Blaya, R. A., Reyes, J. B., & García, T. M. (2006). Teodorescu transform decomposition of multivector fields on fractal hypersurfaces. En D. Alpay, A. Luger, & H. Woracek (Eds.), Wavelets, Multiscale Systems and Hypercomplex Analysis. Operator Theory: Advances and Applications 167, 1–16.

Blaya, R. A., Reyes, J. B., & García, T. M. (2007). Minkowski dimension and Cauchy transform in Clifford analysis. Complex Analysis and Operator Theory, 1(3), 301–315.

Blaya, R. A., Reyes, J. B., & García, T. M. (2008). Cauchy Transform on non-rectifiable surfaces in Clifford analysis. Journal of Mathematical Analysis and Applications, 339, 31–44.

Blaya, R. A., Reyes, J. B., García, T. M., & Peña, D. P. (2008). Laplacian decomposition of vector fields on fractal surfaces. Mathematical Methods in the Applied Sciences, 31(7), 849–857.

Blaya, R. A., Reyes, J. B., & Peña, D. P. (2007). Jump problem and removable singularities for monogenic functions. Journal of Geometric Analysis, 17(1), 1–14.

Brackx, F., Delanghe, R., & Sommen, F. (1982). Clifford analysis. Pitman (Advanced Publishing Program), Boston, MA.

Clifford, W. K. (1878). Applications of Grassmann’s extensive algebra. American Journal of Mathematics, 1, 350–358.

Cnops, J., & Malonek, H. (1997). An introduction to Clifford analysis. Textos de Matemática, Serie B., Universidade de Coimbra, Portugal, 7.

Delanghe, R. (1970). On regular-analytic functions with values in a Clifford algebra. Mathematische Annalen, 185, 91–111.

Delanghe, R., Sommen, F., & Soucěk, V. (1992). Clifford algebra and spinor-valued functions: A function theory for the Dirac operator. Springer Dordrecht. XVII, 485 p. ISBN 978-94-011-2922-0.

Dinh, D. (2021). On structure of inframonogenic functions. Advances in Applied Clifford Algebras, 31(50), 1–9.

Dzhuraev, A. (1992). Methods of singular integral equation. Pitman Monographs and Surveys in Pure and Applied Mathematics 60. Longman Scientific & Technical. 311 p. ISBN 0-582-08373-7.

Federer, H. (1969). Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer. 694 p. ISBN 978-3-540-60656-7.

Fueter, R. (1934). Die Funktionentheorie der Differentialgleichungen Δu = 0 und ΔΔu = 0 mit vier Variablen. Commentarii Mathematici Helvetici, 7, 307–330.

García, A. M., García, T. M., Blaya, R. A., & Reyes, J. B. (2018). Inframonogenic functions and their applications in three-dimensional elasticity theory. Mathematical Methods in the Applied Sciences, 41(10), 3622–3631.

García, A. M., Santiesteban, D. A., & Blaya, R. A. (2023). On the Dirichlet problem for second order elliptic systems in the ball. Journal of Differential Equations, 364, 498–520.

Gilbert, J., & Murray, M. (1991). Clifford algebras and Dirac operator in Harmonic Analysis. Cambridge University Press, Cambridge. 334 p. ISBN 978-051-161-158-2.

Gilbert, R. P., & Buchanan, J. (1983). First Order Elliptic Systems: A Function Theoretic Approach. Academic Press, New York. ISBN 978-012-283-280-2.

Gürlebeck, K., Habetha, K., & Sprössig, W. (2008). Holomorphic functions in the plane and n-dimensional space. Birkhäuser Verlag, Basel. 406 p. ISBN 978-3-7643-8271-1.

Gürlebeck, K., & Nguyen, H. (2014). On ψ-hyperholomorphic functions and a decomposition of harmonics. En S. Bernstein, U. Kähler, I. Sabadini, & F. Sommen (Eds.), Hypercomplex Analysis: New Perspectives and Applications. Trends in Mathematics. Birkhäuser, Cham. ISBN 978-3-319-08771-9. https://doi.org/10.1007/978-3-319-08771-9_12.

Gürlebeck, K., & Nguyen, H. (2015). ψ-hyperholomorphic functions and an application to elasticity problems. AIP Conference Proceedings, 1648(1), 440005.

Gürlebeck, K., & Sprössig, W. (1990). Quaternionic analysis and elliptic boundary value problems. Birkhäuser, Boston. 254 p. ISBN 978-3-0348-7295-9. https://doi.org/10.1007/978-3-0348-7295-9.

Gürlebeck, K., & Sprössig, W. (1997). Quaternionic and Clifford Calculus for Physicists and Engineers. Wiley & Sons Publications. 375 p. ISBN 0-471-96200-7.

Hestenes, D. (1968). Multivector functions. Journal of Mathematical Analysis and Applications, 24, 467–473.

Iftimie, V. (1965). Fonctions hypercomplexes. Bulletin mathématique de la Société des Sciences Mathématiques de la République Socialiste de Roumanie, 9, 279–332.

Kats, B. A. (1983). The Riemann problem on a closed Jordan curve. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, Kazanskii Gosudarstvennyi Universitet, 251(4), 68–80.

Krausshar, R., & Malonek, H. (2001). A characterization of conformal mappings in ℝ⁴ by a formal differentiability condition. Bulletin de la Société Royale des Sciences de Liège, 70(1), 35–49.

Kravchenko, V. V. (2003). Applied quaternionic analysis. Research and Exposition in Mathematics 28. 136 p. ISBN 3-88538-228-8.

Kravchenko, V., & Shapiro, M. (1996). Integral representations for spatial models of mathematical physics. Pitman Research Notes in Mathematics Series 351. 256 p. ISBN 978-058-229-741-8.

Lávicka, R. (2011). The Fischer decomposition for the H-action and its applications. En I. Sabadini & F. Sommen (Eds.), Hypercomplex Analysis and Applications. Trends in Mathematics. Springer, Basel. https://doi.org/10.1007/978-3-0346-0246-4_10.

Malonek, H., Peña, D. P., & Sommen, F. (2010). Fischer decomposition by inframonogenic functions. CUBO A Mathematical Journal, 12(2), 189–197.

Mitrea, M. (1994). Clifford wavelets, singular integrals, and Hardy spaces. Lecture Notes in Mathematics, 1575. 120 p. ISBN 978-3-540-48379-3. https://doi.org/10.1007/BFb0073556.

Moisil, G. C., & Theodoresco, N. (1931). Fonctions holomorphes dans l’espace. Mathematica, Cluj, 5, 142–159.

Nôno, K., & Inenaga, Y. (1987). On the Clifford linearization of Laplacian. Journal of the Indian Institute of Sciences, 67(5-6), 203–208.

Obolashvili, E. (2002). Higher order partial differential equations in Clifford analysis: Effective solutions to problems. Birkhäuser, Boston; Berlin; Basel. 192 p. ISBN 978-0817642860.

Reséndis, F., & Shapiro, M. (2002). Recent advances in hypercomplex analysis. Carta Informativa, Sociedad Matemática Mexicana, 11-14.

Ricardo, J. S., Reyes, J. B., & Blaya, R. A. (2021). Singular integral operators and a ∂-problem for (ϕ, ψ)-harmonic functions. Analysis and Mathematical Physics, 11(155), 1-26.

Rocha-Chávez, R., Shapiro, M., & Sommen, F. (2001). Integral theorems for functions and differential forms in ℂⁿ. Chapman and Hall. 214 p. ISBN 978-158-488-246-6.

Ryan, J. (2000). Basic Clifford analysis. Cubo Matemática Educacional, 2, 226-256.

Ryan, J. (2004). Introductory Clifford analysis. En R. Ablamowicz & G. Sobczyk (Eds.), Lectures on Clifford (geometric) algebras and applications. Birkhäuser, Boston, MA.

Santiesteban, D. A. (2024). ∂-problem for a second order elliptic system in Clifford analysis. Mathematical Methods in the Applied Sciences, 47(12), 9718-9728. https://doi.org/10.1002/mma.10090.

Santiesteban, D. A., Blaya, R. A., & Alejandre, M. Á. (2022a). On (φ, ψ)-inframonogenic functions in Clifford analysis. Bulletin of the Brazilian Mathematical Society, New Series, 53, 605-621.

Santiesteban, D. A., Blaya, R. A., & Alejandre, M. Á. (2022b). On a generalized Lamé-Navier system in ℝ³. Mathematica Slovaca, 72(6), 1527-1540.

Santiesteban, D. A., Blaya, R. A., & Reyes, J. B. (2023). Boundary value problems for a second-order elliptic partial differential equation system in Euclidean space. Mathematical Methods in the Applied Sciences, 46, 15784-15798.

Shapiro, M. (1997). On the conjugate harmonic functions of M. Riesz-E. Stein-G. Weiss. En S. Dimiev et al. (Eds.), Topics in Complex Analysis, Differential Geometry and Mathematical Physics. Third International Workshop on Complex Structures and Vector Fields. St. Konstantin, Bulgaria, August 23-29.

Sommen, F., & Sprössig, W. (2002). Introduction to Clifford analysis. Mathematical Methods in the Applied Sciences, 25(6), 1337-1342.

Sprössig, W. (2002). Clifford analysis and its applications in Mathematical Physics. Cubo Matemática Educacional, 4, 253-314.

Sudbery, A. (1979). Quaternionic analysis. Mathematical Proceedings of the Cambridge Philosophical Society, 85, 199-225.

Wang, L., Jia, S., Luo, L., & Qiu, F. (2022). Plemelj formula of inframonogenic functions and their boundary value problems. Complex Variables and Elliptic Equations, 68(7), 1158-1181. https://doi.org/10.1080/17476933.2022.2040019.

Wen, G., Sha, H., & Yu-Ying, Q. (2005). Real and complex Clifford analysis. Springer-Verlag, Berlin. 251 p. ISBN 978-0-387-24536-2.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2024 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales