Ferrobismutitas de tierra rara: cerámicos ferromagnéticos semiconductores con aplicabilidad en dispositivos espintrónicos
PDF (English)

Cómo citar

Roa Rojas, J., Cuervo Farfán, J. A. ., Deluque Toro, C. E. ., Landínez Téllez, D. A. ., & Parra Vargas, C. A. . (2022). Ferrobismutitas de tierra rara: cerámicos ferromagnéticos semiconductores con aplicabilidad en dispositivos espintrónicos. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 46(180), 628–645. https://doi.org/10.18257/raccefyn.1723

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

Se reporta el proceso de síntesis del material complejo de tipo perovskita Bi0.5R0.5FeO3 (R=Eu, Sm, Dy) mediante el método cerámico, así como su caracterización estructural, óptica, magnética y eléctrica. Los datos refinados de difracción de rayos X revelaron que este material cristaliza en una estructura ortorrómbica (grupo espacial Pnma número 62). La respuesta óptica en la curva de espectroscopia de reflectancia difusa proporcionó un valor de brecha energética típico de los materiales semiconductores. La magnetización presentó un comportamiento histerético de campo coercitivo muy bajo  característico del ferromagnetismo débil, para todas las temperaturas examinadas por debajo de 300 K y la aplicación de varios campos magnéticos. Las curvas de permitividad eléctrica real y compleja evidenciaron la presencia de procesos de relajación dieléctrica a 113 K, lo que concuerda con los reportes sobre corrientes piroeléctricas y termoestimuladas en función de la temperatura y revela la aparición de polarización ferroeléctrica por debajo de los 113 K, con un posible acoplamiento magnetoeléctrico. Por otro lado, se hizo un estudio teórico de la estructura electrónica con y sin la fase distorsiva de Berry. Se hicieron cálculos ab initio siguiendo el formalismo de la teoría funcional de la densidad y el método de ondas planas pseudopotenciales, formalismo en el cual los mecanismos de intercambio y correlación se describen mediante el enfoque de gradiente generalizado (GGA + U) considerando la polarización de espín. El análisis con la fase de Berry sugirió la presencia de ferroelectricidad a menos de 113 K, lo que concuerda con el análisis experimental que sugiere un comportamiento biferroico a bajas temperaturas debido a que la fase distorsiva introduce hibridaciones entre los estados 3d-Fe y 2p-O que favorecen la aparición de interacciones Dzyaloshinskii-Moriya, las cuales, a su vez, facilitan la aparición de ferroelectricidad en condiciones de ferromagnetismo débil. Las propiedades termodinámicas en presencia y ausencia de la fase de Berry en el modelo cuasi-armónico de Debyerevelaron la aparición de una transición ferroeléctrica a los 113 K, lo que corrobora la naturaleza magnetoeléctrica a bajas temperaturas. El carácter ferromagnético semiconductor a temperatura ambiente potencia este material para aplicaciones en tecnología espintrónica.

https://doi.org/10.18257/raccefyn.1723

Palabras clave

Perovskita | Estructura | Ferromagnetismo | Ferroelectricidad | Semiconductor | Espintrónica
PDF (English)

Citas

Acharya, S., Mondal, J., Ghosh, S., Roy, S.K., Chakrabarti, P.K. (2010). Multiferroic Behavior of Lanthanum Orthoferrite (LaFeO3). Materials Letters, 64, 415-418.

Alarcón-Suesca, C.E., Deluque-Toro, C.E., Gil-Rebaza, A.V., Landínez-Téllez, D.A., Roa-Rojas, J. (2019). Ab-initio studies of electronic, structural and thermophysical properties of the Sr2TiMoO6 double perovskite. Journal of Alloys and Compounds, 771, 1080-1089.

Benedek, N.A. (2014). Origin of Ferroelectricity in a Family of Polar Oxides: The Dion—Jacobson Phases. Journal Inorganic Chemistry, 53, 3769-3777.

Blöchl, P.E. (1994). Projector augmented-wave method. Physical Review Journals, 50, 17953-17979.

Brown, I.D. (2009). Recent Developments in the Methods and Applications of the Bond Valence Model. Journal Chemical Reviews, 109 (12), 6858-6919

Cuervo-Farfán, J.A., Aljure-García, D.M., Cardona, R., Arbey-Rodríguez, J., Landínez-Téllez, D.A., Roa-Rojas, J. (2017). Structure, Ferromagnetic, Dielectric and Electronic Features of the LaBiFeeO6 Material. Journal of Low Temperature Physics, 186, 295-315.

Cuervo-Farfán, J.A., Castellanos-Acuña, H.E., Landínez-Téllez, D.A., Parra-Vargas, C.A., Roa-Rojas, J. (2016). Structural, magnetic, and electrical features of the Nd2SrMn2TiO9 perovskite‐like compound, Physica Status Solidi (B), 253, 1127-1132.

Cuervo-Farfán, J.A., Deluque-Toro, C.E., Parra-Vargas, C.A., Landínez-Téllez, D.A., Roa-Rojas, J. (2020). Experimental and theoretical determination of physical properties in the Sm2Bi2Fe4O12 ferromagnetic semiconductor. Journal of Materials Chemistry, C8, 4925-14939.

Cuervo-Farfán, J.A., Parra-Vargas, C.A., Viana D.S.F., Milton, F.P., García, D., Landínez-Téllez, D.A., Roa-Rojas, J. (2018). Structural, Magnetic, Dielectric and Optical Properties of the Eu2Bi2Fe4O12 Bismuth-Based Low-Temperature Biferroic, Journal of Materials Science: Materials in Electronics, 29, 20942-20951.

Cuervo-Farfán, J.A., Benav.des-Lara, J.P., Parra-Vargas, C.A. Landínez-Téllez, D.A., Roa-Rojas, J. (2021). Structural Characteristics and Electric and Magnetic Features of the Nd2.68 Sr1.32Mn1.2Ti1.32Fe1.48O12 Ferromagnetic Semiconductor. Journal of Low Temperature Physics, 202, 128-144.

Dann, S.E., Currie, D.B., Weller, M.T., Thomas, M.F., Al-Rawwas, A.D. (1994). The Effect of Oxygen Stoichiometry on Phase Relations and Structure in the System La1-xSrxFeO3-δ (0 ≤x ≤1, 0 ≤δ≤0.5). Journal of Solid State Chemistry, 109, 134-144.

Dash, U., Sahoo, S., Chaudhuri, P., Parashar, S.K.S., Parashar, K. (2014). Electrical properties of bulk and nano Li2TiO3 ceramics: A comparative study. Journal of Advanced Ceramics, 3, 89-97.

Deluque-Toro, C.E., Mosquera-Polo, A.S., Gil-Rebaza, A.V, Landínez-Téllez, D.A., Roa-Rojas, J. (2018a). Ab Initio Study of the Electronic Structure, Elastic Properties, Magnetic Feature and Thermodynamic Properties of the Ba2NiMoO6 Material. Journal of Low Temperature Physics, 192, 265-285.

Deluque-Toro, C.E., Mosquera-Polo, A.S., Villa-Hernández, J.I., Landínez-Téllez, D.A., Roa-Rojas, J. (2018b). Thermodynamic properties, electronic and crystallographic structure, and magnetic response of the Sr2HoNbO6 material. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 42,180-187.

Deluque-Toro, C.E., Landínez-Téllez, D.A., Roa-Rojas, J. (2018). Ab-initio analysis of magnetic, structural, electronic and thermodynamic properties of the Ba2TiMnO6 manganite. DYNA, 85, 27-36.

Ding, J.L & Zhong, Y. (2020). A theoretical strategy for pressure-driven ferroelectric transition associated with critical behavior and magnetoelectric coupling in organic multiferroics. Physical Chemistry Chemical Physics, 22, 19120-19130.

Dong, S., Xiang, H., Dagotto, E. (2019). Magnetoelectricity in multiferroics: a theoretical perspective. National Science Review, 6, 629-641.

Estrada-Contreras, V.R., Alarcón-Suesca, C.E., Deluque-Toro, C.E., Landínez-Téllez, D.A., Roa-Rojas, J. (2021). Crystalline, ferromagnetic-semiconductor and electronic features of the terbium-based cobalt-ferrite Tb2FeCoO6. Ceramics International, 47, 14408-14417.

Fodouop, F.K., Fouolceng, G.C., Tchoffo, M., Fai, L.C., Randrianantoandro N. (2019). Thermodynamics of metamagnetoelectric effect in multiferroics. Journal of Magnetism and Magnetic Materials, 474, 456-461.

Garrido, L.C., Deluque-Toro, C.E., Díaz, I., Landínez-Téllez, D.A., Roa-Rojas, J. (2021). Firstprinciples calculations to investigate elastic, electronic and thermophysical properties of the Dy2Bi2Fe4O12 ferromagnetic semiconductor. Semiconductor Science and Technology, 36, 095015.

Gil-Rebaza, A.V., Deluque-Toro, C.E., Medina-Chanduví, H.H., Landínez-Téllez, D.A., Roa-Rojas, J. (2021). Thermodynamic evidence of the ferroelectric Berry phase in europiumbased ferrobismuthite Eu2Bi2Fe4O12. Journal of Alloys and Compounds, 884, 161114.

Gilioli, E. & Ehm, L. (2014). High pressure and multiferroics materials: a happy marriage. IUCrJ, 1, 590-603.

Glazer, A.M. (1975). Simple ways of determining perovskite structures. Acta Crystallographica, 31, 756-762.

Goldschmidt, V.M. (1926). Die Gesetze der Krystallochemie. Naturwissenschaften, 14 (21), 477-485.

Guss, P., Foster, M.E., Wong, B.M., Doty, F.P., Shah, K., Squillante, M.R., Shirwadkar, U., Hawrami, R., Tower, J., Yuan, D. (2014). Results for aliovalent doping of CeBr3 with Ca2+. Journal of Applied Physics, 15, 034908.

Hazen, R.M. (1988). Perovskites. Scientific American, 258, 74-81.

Heyd, J., Scuseria, G.E., Ernzerhof, M. (2003). Hybrid functionals based on a screened Coulomb potential. Journal of Chemical Physics, 118, 8207-8215.

Jaramillo-Palacio, J.A., Barrera-Bello, E.W., Munévar-Cagigas, J.A., Arnache, O., Landínez-Téllez, D.A., Roa-Rojas, J. (2017). Structure and Physical Properties of the LaBiFe2O6 Perovskite Produced by the Modified Pechini Method. Journal of Materials Research, 20, 1309-1316.

Jaramillo-Palacio, J.A., Muñoz-Pulido, K.A., Arbey-Rodríguez, J., Landínez-Téllez, D.A., Roa-Rojas, J. (2021). Electric, magnetic and microstructural features of the La2CoFeO6 lanthanide ferrocobaltite obtained by the modified Pechini route. Journal of Advanced Dielectrics, 11, 2140003.

King, G. & Woodward, P.M. (2010). Cation ordering in perovskites. Journal of Materials Chemistry, 20, 5785-5796.

Koehler, W.C. & Wollan, E.O. (1957). Neutron-diffraction study of the magnetic properties of perovskite-like compounds LaBO3. Journal of Physics and Chemistry of Solids, 2, 100-106.

Kresse, G. & Joubert, J. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59, 1758-1775.

Landínez-Téllez, D.A., Buitrago-Martínez, D., Barrera, E.W., Roa-Rojas, J. (2014). Crystalline structure, magnetic response and electronic properties of RE2MgTiO6 (RE= Dy, Gd) double perovskites. Journal of Molecular Structure, 1067, 205-209.

Liechtenstein, A.I., Anisimov,V.I., Zaanen, J. (1995). Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. Physical Review B, 52, R5467-R5470.

Llamosa, D.P., Landínez-Téllez, D.A., Roa-Rojas, J. (2009). Magnetic and structural behavior of Sr2ZrMnO6 double perovskite. Journal of Physics B, 404, 2726-2729.

Lu, J., Günther, A., Schrettle, F., Mayr, F., Krohns, S., Lunkenheimer, P., Pimenov, A., Travkin, V.D., Mukhin, A.A., Loidl, A. (2010). On the Room Temperature Multiferroic BiFeO3: Magnetic, Dielectric and Thermal Properties. European Physical Journal B, 75, 451-460.

Lufaso, M.W. & Woodward, P.M. (2001). Prediction of the Crystal Structures of Perovskites Using the Software Program SPuDS. Acta Crystallographica, B57, 725-738.

Lunkenheimer, P., Bobnar, V., Pronin, A.V., Ritus, A.I., Volkov, A.A., Loidl, A. (2002). Origin of apparent colossal dielectric constants. Journal of Physics B. 66, 521051.

Methfessel, M. & Paxton, A.T. (1986). High-precision sampling for Brillouin-zone integration in metals. Journal of Physics B, 40, 3616-3621.

Mishra, S.K. & Pandey, D. (2009). Low temperature x-ray diffraction study of the phase transitions in Sr1-xCaxTiO3 (x=0.02,0.04): Evidence for ferrielectric ordering. Applied Physics Letters, 95, 232910.

Monkhorst, H.J. & Pack, J.D. (1976). Special points for Brillouin-zone integrations. Journal of Physics B, 13, 5188-5192.

Murnaghan, F.D. (1944). The Compressibility of Media under Extreme Pressures. Proceedings of the National Academy of Sciences, 30, 244-247.

Myrick, M.L., Simcock, M.N., Baranowski, M., Brooke, H., Morgan, S.L., McCutcheon, J.N. (2011), The Kubelka-Munk Diffuse Reflectance Formula Revisited. Applied Spectroscopy Reviews, 46, 140-165.

Nieto-Camacho, J.A., Cardona-Vásquez, J.A., Sarmiento-Santos, A., Landínez-Téllez, D.A., Roa-Rojas, J. (2020). Study of the microstructure and the optical, electrical, and magnetic feature of the Dy2Bi2Fe4O12 ferromagnetic semiconductor, Journal of Materials Research and Technology, 9, 10686-10697.

Pandey, R.K., Stapleton, W.A., Sutanto, I. (2015). Nature and Characteristics of a Voltage-Biased Varistor and its Embedded Transistor. IEEE Journal of the Electron Devices Society, 3, 276-283

Perdew, J.P., Burke, K., Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77, 3865-3868.

Phokha, S., Pinitsoontorn, S., Maensiri, S., Rujirawat, S. (2014). Structure, optical and magnetic properties of LaFeO3 nanoparticles prepared by polymerized complex method. Journal of Sol-Gel Science and Technology, 71, 333-341.

Resta, R. (1994). Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Reviews of Modern Physics, 66, 899-915.

Resta, R. (1997). Polarization as a Berry Phase, Europhys. News, 28, 18-20.

Sergienko, I.A. & Dagotto, E. (2006). Role of the Dzyaloshinskii-Moriya interaction in multiferroic perovskites Journal of Physics B, 73, 094434.

Sorescu, M., Xu, T., Hannan, A. (2011). Initial Stage Growth Mechanism of LaFeO3 Perovskite through Magnetomechanical Ball-Milling of Lanthanum and Iron Oxides. American Journal of Materials Science, 1, 57-66.

Spaldin, N.A. (2020). Multiferroics beyond electric-field control of magnetism. Proceedings of the Royal Society A, 476, 20190542.

Triana, C.A., Landínez-Téllez, D.A., Roa-Rojas, J. (2012). Synthesis process and structural characterization of the Sr2EuRuO6 complex perovskite. Journal of Alloys and Compounds, 516, 179-185.

Vojta, A., Wen, Q., Clarke, D.R. (1996). Influence of microstructural disorder on the current transport behavior of varistor ceramics. Computational Materials Science, 6, 51-62.

Wu, J., Mao, S., Ye, Z-G., Xie, Z., Zheng, L. (2010). Room-temperature ferromagnetic/ferroelectric BiFeO3 synthesized by a self-catalyzed fast reaction process. Journal of Materials Chemistry A, 20, 6512-6516.

Xu, J.M., Wang, G.M., Wang, H.X., Ding, D.F., He, Y. (2009). Synthesis and weak ferromagnetism of Dy-doped BiFeO3 powders. Materials Letters, 63, 855–857.

Yamada, I., Takamatsu, A., Ikeno, H. (2018). Complementary evaluation of structure stability of perovskite oxides using bond-valence and density-functional-theory calculations. Science and Technology of Advanced Materials, 19 (1), 101-107.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2022 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales