Resumen
En este documento se presenta una formulación de potencial vectorial asociado al campo eléctrico para estudiar electrodos de superficie embebidos en un plano. Se muestra que el problema se puede abordar mediante la solución de la ecuación de Laplace en el espacio libre, bajo condiciones de frontera de Neumann sobre las placas cuando la separación entre ellas tiende a cero. Se obtiene que campo eléctrico matemáticamente guarda una analogía con la ley de Biot-Savart de magnetostática. La estrategia permite generalizar dicho resultado analítico para su aplicación en la descripción de electrodos de superficie con separación entre las placas.
Referencias
Albanese, R., & Rubinacci, G. (1990). Treatment of multiply connected regions in twocomponent electric vector potentials formulations. IEEE transactions on magnetics, 26(2), 650–653. (doi: 10.1109/20.106401)
Balanis, C. A. (2015). Antenna theory: analysis and design. John wiley & sons. Chiaverini, J., Blakestad, B. R., Britton, J. W., Jost, J. D., Langer, C., Leibfried, D. G., . . . Wineland, D. J. (2005). Surface-electrode architecture for ion-trap quantum information processing. Quantum Information and Computation, 5(Quantum Information and Computation), . (doi: 10.1088/1367-2630/12/2/023038)
Daniilidis, N., Narayanan, S., M¨ oller, S. A., Clark, R., Lee, T. E., Leek, P. J., . . . H¨ affner, H. (2011). Fabrication and heating rate study of microscopic surface electrode ion traps. New Journal of Physics, 13(1), 013032. (doi: 10.1088/1367-2630/13/1/013032)
Hicks, B. C., Paravastu-Dalal, N., Stewart, K. P., Erickson, W. C., Ray, P. S., Kassim, N. E., . . . others (2012). A wide-band, active antenna system for long wavelength radio astronomy. Publications of the Astronomical Society of the Pacific, 124(920), 1090. (doi: 10.1086/668121)
Hong, S., Lee, M., Kwon, Y.-D., Kim, T., et al. (2017). Experimental methods for trapping ions using microfabricated surface ion traps. JoVE (Journal of Visualized Experiments),(126), e56060. (doi: 10.3791/56060)
House, M. (2008). Analytic model for electrostatic fields in surface-electrode ion traps. Physical Review A, 78(3), 033402. (doi: 10.1103/PhysRevA.78.033402)
Jackson, J. D. (1999). Classical electrodynamics. Jhon Wiley & Sons, Inc. Kim, T. H., Herskind, P. F., & Chuang, I. L. (2011). Surface-electrode ion trap with integrated light source. Applied Physics Letters, 98(21), 214103. (doi: 10.1063/1.3593496)
Landis, C. M. (2002). A new finite-element formulation for electromechanical boundary value problems. International Journal for Numerical Methods in Engineering, 55(5), 613–628. (doi: 10.1002/nme.518)
Albanese, R., Rubinacci, G. (1990). Treatment of multiply connected regions in two-component electric vector potentials formulations. IEEE transactions on magnetics, 26(2), 650-653. doi: 10.1109/20.106401
Balanis, C. A. (2015). Antenna theory: analysis and design. John wiley & sons. Chiaverini, J., Blakestad, B. R., Britton, J. W., Jost, J. D., Langer, C., Leibfried, D. G., Wineland, D. J. (2005). Surface-electrode architecture for iontrap quantum information processing. Quantum Information and Computation, 5(Quantum Information and Computation). doi: 10.1088/1367-2630/12/2/023038
Daniilidis, N., Narayanan, S., Möller, S. A., Clark, R., Lee, T. E., Leek, P. J., Häffner, H. (2011). Fabrication and heating rate study of microscopic surface electrode ion traps. New Journal of Physics, 13(1), 013032. doi: 10.1088/1367-2630/13/1/013032
Hicks, B. C., Paravastu-Dalal, N., Stewart, K. P., Erickson, W. C., Ray, P. S., Kassim, N. E., Burns, S., Clarke, T., Schmitt, H., Craig, J., Hartman, J., Weiler K. W. (2012). A wideband, active antenna system for long wavelength radio astronomy. Publications of the Astronomical Society of the Pacific, 124(920), 1090. doi: 10.1086/668121
Hong, S., Lee, M., Kwon, Y.-D., Dan Cho, Dong.-Il, Kim, T. (2017). Experimental methods for trapping ions using microfabricated surface ion traps. JoVE (Journal of Visualized Experiments), (126), e56060. doi: 10.3791/56060
House, M. (2008). Analytic model for electrostatic fields in surface-electrode ion traps. Physical Review A, 78(3), 033402. doi: 10.1103/PhysRevA.78.033402
Jackson, J. D. (1999). Classical electrodynamics. JhonWiley & Sons, Inc. Kim, T. H., Herskind, P. F., Chuang, I. L. (2011). Surface-electrode ion trap with integrated light source. Applied Physics Letters, 98(21), 214103. doi: 10.1063/1.3593496
Landis, C. M. (2002). A new finite-element formulation for electromechanical boundary value problems. International Journal for Numerical Methods in Engineering, 55(5), 613-628. doi: 10.1002/nme.518
Mokhberi, A., Schmied, R., & Willitsch, S. (2017). Optimised surface-electrode ion-trap junctions for experiments with cold molecular ions. New Journal of Physics, 19(4), 043023. doi: 10.1088/1367-2630/aa6918
Mozdzen, T., Bowman, J., Monsalve, R., Rogers, A. (2017). Improved measurement of the spectral index of the diffuse radio background between 90 and 190 mhz. Monthly Notices of the Royal Astronomical Society, 464(4), 4995-5002.doi: 10.1093/mnras/stw2696
Hong, S., Lee, M., Kwon, Y.-D., Kim, T., et al. (2017). Experimental methods for trapping ions using microfabricated surface ion traps. JoVE (Journal of Visualized Experiments),(126), e56060. (doi: 10.3791/56060)
House, M. (2008). Analytic model for electrostatic fields in surface-electrode ion traps. Physical Review A, 78(3), 033402. (doi: 10.1103/PhysRevA.78.033402)
Kim, T. H., Herskind, P. F., & Chuang, I. L. (2011). Surface-electrode ion trap with integrated light source. Applied Physics Letters, 98(21), 214103. (doi: 10.1063/1.3593496)
Mielenz, M., Kalis, H., Wittemer, M., Hakelberg, F., Schmied, R., Blain, M., . . . Schaetz, T. (2015). Freely configurable quantum simulator based on a two-dimensional array of individually trapped ions. arXiv preprint arXiv:1512.03559
Mokhberi, A., Schmied, R., & Willitsch, S. (2017). Optimised surface-electrode ion-trap junctions for experiments with cold molecular ions. New Journal of Physics, 19(4), 043023. (doi: 10.1088/1367-2630/aa6918)
Oliveira, M. H., & Miranda, J. A. (2001). Biot-savart-like law in electrostatics. European Journal of Physics, 22(1), 31. (doi: 10.1088/0143-0807/22/1/304)
Salazar, R., Bayona, C., & Chaves, J. (2019). Electrostatic field of angular-dependent surface electrodes. Eur. Phys. J. Plus, 135(93), . (doi: 10.1140/epjp/s13360-019-00090-3)
Salazar, R., Bayona, C., & T ́ellez, G. (2020). Electric vector potential formulation in electrostatics: Analytical treatment of the gaped surface electrode. Eur. Phys. J. Plus, 135(878), . (https://doi.org/10.1140/epjp/s13360-020-00864-0)
Salazar, R., Bayona, C., & Tellez, G. (2022). Monte carlo simulations of two-component coulomb gases applied in surface electrodes. Journal of Physics: Condensed Matter,(), . (10.1088/1361-648X/ac4aa8)
Schmied, R. (2010). Electrostatics of gapped and finite surface electrodes. New Journal of Physics, 12(2), 023038. (doi: 10.1088/1367-2630 12/2/023038)
Seidelin, S., Chiaverini, J., Reichle, R., Bollinger, J. J., Leibfried, D., Britton, J., . . . others (2006). Microfabricated surface-electrode ion trap for scalable quantum information processing. Physical review letters, 96(25), 253003. (doi: 10.1103/PhysRevLett.96.253003)
Tao, J., Chew, N. P., Guidoni, L., Lim, Y. D., Zhao, P., & Tan, C. S. (2018). Fabrication and characterization of surface electrode ion trap for quantum computing. In 2018 ieee 20th electronics packaging technology conference (eptc) (pp. 363–366). (doi: 10.1109/EPTC.2018.8654328)
van Mourik, M. W., Martinez, E. A., Gerster, L., Hrmo, P., Monz, T., Schindler, P., & Blatt, R. (2020). Coherent rotations of qubits within a surface ion-trap quantum computer. Physical Review A, 102(2), 022611. (https://doi.org/10.1103/PhysRevA.102.022611)

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2022 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales