Resumen
Este artículo de revisión presenta el panorama actual de las múltiples tecnologías basadas en la luz que se han hecho indispensables en nuestra vida diaria y que seguirán teniendo impacto en ella y en la economía mundial. Con el objetivo de motivar la formulación de un plan nacional de desarrollo de la investigación y apropiación de la tecnología fotónica en Colombia, se presentan los propósitos generales de algunas iniciativas regionales y nacionales de investigación y desarrollo en óptica y fotónica.
Palabras clave
Citas
Ajima, Y. (2022). Optical connection of top-level supercomputers: current status and future expectations. In R. T. Chen & H. Schröder (Eds.), Optical interconnects XXII (Vol. 12007, pp. 11 – 19). SPIE. https://doi.org/10.1117/12.2607916
Aspect, A., Dalibard, J., Roger, G. (1982, Dec). Experimental Test of Bell’s Inequalities Using Time-varying Analyzers. Physical Review Letters, 49, 1804-1807. https://link.aps.org/doi/10.1103/PhysRevLett.49.1804
Barrera, J. F., Mira, A., Torroba, R. (2013). Optical encryption and QR codes: Secure and noisefree information retrieval. Optical Express, 21(5), 5373-5378. https:// doi.org/10.1364/OE.21.005373
Berkovich, Y.A., Konovalova, O., Smolyanina, S.O., Erokhin, A. N., Averchevab, O.V., Bassarskayab, M., Kochetovab, G.V., Zhigalovab, T.V., YakovlevacI, O.S., Tarakanovc, I.G. (2017). LED crop illumination inside space green-houses. REACH, 6, 11-24. https://doi.org/10.1016/j.reach.2017.06.001
Bobin, J. (2020). 50 years ago: the first nuclear fusion reactions induced by laser radiation. Reflets de la Physique, 67, 21-25. https://inis.iaea.org/search/search.aspx?orig_q=RN:520712055
Bogue, R. (2015). Lasers in manufacturing: a review of technologies and applications. Assembly Automation, 35(2), 161-165. https://doi.org/10.1108/AA-07-2014-066
Bouwmeester, D., Pan, J.-W., Daniell, M., Weinfurter, H., Zeilinger, A. (1999, Feb). Observation of three-photon Greenberger-Horne-Zeilinger entanglement. Physical Review Letters, 82, 1345-1349. https://link.aps.org/doi/10.1103/PhysRevLett.82.1345
Calegari, F., Sansone, G., Stagira, S., Vozzi, C., Nisoli, M. (2016). Advances in attosecond science. Journal of Physics B: Atomic, Molecular and Optical Physics, 49(6), 062001. https://doi.org/10.1088/0953-4075/49/6/062001
Chan, J., Toth, C. K. (2018). Topographic laser ranging and scanning, 2nd. edition. CRC Press, Taylor and Francis Group. https://doi.org 10.1201/9781315154381
Chen, C.-C., González-Escudero, R., Minář, J., Pasquiou, B., Bennetts, S., Schreck, F. (2022). Continuous Bose–Einstein condensation. Nature, 606(3), 683-687. https://doi.org/10.1038/s41586-022-04731-z
Choi, S., Jung, K., Noh, S. D. (2015). Virtual reality applications in manufacturing industries: Past research, present findings, and future directions. Concurrent Engineering, 23(1), 40-63. https://doi.org/10.1177/1063293X14568814
Chua, C. K., Matham, M. V., Kim, Y.-J. (2017). Lasers in 3D printing and manufacturing. World Scientific. https://doi.org/10.1142/9500
Clauser, J. F., Horne, M. A., Shimony, A., Holt, R. A. (1969, Oct). Proposed experiment to test local hidden-variable theories. Physical Review Letters, 23, 880-884. https://link.aps.org/doi/10.1103/PhysRevLett.23.880
Daukantas, P. (2010). A short history of laser light shows. OPN Optics & Photonics News, 44, 42-47. https://laserfest.org/news/opn-laser-shows.pdf
Davis, K. B., Mewes, M. O., Andrews, M. R., van Druten, N. J., Durfee, D. S., Kurn, D. M., Ketterle, W. (1995). Bose-Einstein condensation in a gas of sodium atoms. Physical Review Letters, 75, 3969-3973. https://doi.org/10.1103/PhysRevLett.75.3969
de Oliveira, M. E., Corrêa, C. G. (2020). Virtual reality and augmented reality applications in agriculture: a literature review. In 2020 22nd symposium on virtual and augmented reality (svr) (p. 1-9). https://doi.org/10.1109/SVR51698.2020.00017
Dudley, J. M. (2020). Light, Lasers, and the Nobel Prize. Advanced Photonics, 2(5), 050501. https://doi.org/10.1117/1.AP.2.5.050501
Einstein, A., Podolsky, B., Rosen, N. (1935, May). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47, 777-780. https://link.aps.org/doi/10.1103/PhysRev.47.777
France, R. M., Geisz, J. F., Song, T., Olavarria, W., Young, M., Kibbler, A., Steiner, M. A. (2022). Triple-junction solar cells with 39.5% terrestrial and 34.2% space efficiency enabled by thick quantum well superlattices. Joule, 6(5), 1121-1135. https://doi.org/10.1016/j.joule.2022.04.024
Franken, P. A., Hill, A. E., Peters, C. W., Weinreich, G. (1961). Generation of optical harmonics. Physical Review Letters, 7(4), 118-119. https://doi.org/10.1103/PhysRevLett.7.118
Geisz, J. F., France, R. M., Schulte, K. L., Steiner, M. A., Norman, A. G., Guthrey, H. L., Matthew, R., Young, M.R., Song, T., Moriarty, T. (2020). Six-junction III–V solar cells with 47.1% conversion efficiency under 143 suns concentration. Nature Energy, 5, 326-335. https://doi.org/10.1038/s41560-020-0598-5
John F Geisz, Ryan M France, Kevin L Schulte, Myles A Steiner, Andrew G Norman, Harvey L Guthrey, Glauber, R. J. (1963). The quantum theory of optical coherence. Physical Review, 130(6), 2529-2539. https://doi.org/10.1103/PhysRev.130.2529
Godin, A. G., Lounis, B., Cognet, L. (2014). Super-resolution microscopy Approaches for live cell imaging. Biophysical Journal, 107(8), 1777-1784. https://doi.org/10.1016/j.bpj.2014.08.028
Guo, B., Sun, J., Lu, Y., Jiang, L. (2019). Ultrafast dynamics observation during femtosecond lasermaterial interaction. International Journal of Extreme Manufacturing, 1(3), 032004. https://doi.org/10.1088/2631-7990/ab3a24
Guo, Q., Su, Y., Hu, T., Guan, H., Jin, S., Zhang, J., . . . Coops, N. C. (2021). Lidar boosts 3D ecological observations and modelings: A review and perspective. IEEE Geoscience and Remote Sensing Magazine, 9(1), 232-257. https://doi.org/10.1109/MGRS.2020.3032713
Guyon, O. (2018). Extreme adaptive optics. Annual Review of Astronomy and Astrophysics, 56(1), 315-355. https://doi.org/10.1146 annurev-astro-081817-052000
Guzmán, A. M. (1998). Óptica atómica ¿la óptica del año 2000? Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 22(84), 363-373. https://www.accefyn.com/revista/Vol_22/84/363-373.pdf
Guzmán, A. M. (2011). Worldwide community of optics at ICO-22 (No. 89). https://www.e-ico.org/blog/wp-content/uploads/2022/06/ICO_news_oct_11.pdf
Guzmán de García, A. (1984). Nonlinear processes in two-photon pumped atomic vapors (Tech. Rep.). Max-Planck-Institut fuer Quantenoptik, Garching (Germany, FR). https://www.osti.gov/biblio/6224722
Göppert-Mayer, M. (1931). Über Elementarakte mit zwei Quantensprüngen. Annalen Der Physik, 401(3), 273-294. https://doi.org/10.1002/andp.19314010303
Hamilton, D., McKechnie, J., Edgerton, E., Wilson, C. (2021). Immersive virtual reality as a pedagogical tool in education: a systematic literature review of quantitative learning outcomes and experimental design. Journal of Computers in Education, 8, 1-32. https://doi.org/10.1007/s40692-020-00169-2
Hering, P., Stry, S., Lay, J. P. (2010). Laser in environmental and life sciences. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-08255-3
Huang, Y., Hsiang, E.-L., Deng, M.-Y., Wu, S.-T. (2010). Mini-LED, micro-LED and OLED displays: present status and future perspectives. Light: Science & Applications - Nature, 9, 105. https://doi.org/10.1038/s41377-020-0341-9
Jelínková, H. (2013). Lasers for medical applications. Woodhead Publishing Series in Electronic and Optical Materials, Elsevier, United States of America. https://www.elsevier.com/books/lasers-for-medical-applications/jelinkova/978-0-85709-237-3
Jiang, L., Wang, A.-D., Li, B., Cui, T.-H., Lu, Y.-F. (2017). Electrons dynamics Control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application. Light: Science & Applications - Nature, 7, 17134. https://doi.org/10.1038/lsa.2017.134
Joe, H., Yun, H., Jo, S., Martin B.G., Byung-Kwon Min, J. (2018). A review on optical fiber sensors for Environmental monitoring. International Journal of Precision Engineering and Manufacturing-Green Technology, 5, 173-191. https://doi.org/10.1007/s40684-018-0017-6
Khan, M. N. (2014). Understanding LED illumination. CRC Press, Taylor and Francis Group. https://www.routledge.com/Understanding-LED-Illumination/Khan/p/book/9780367867102
Kirkland, A. H. (2022, julio/agosto). Optics & art. Optics and Photonics News, 30-39. https://www.optica-opn.org/home/articles/volume_33/july_august_2022/features/optics_art/
Kobayashi, T., Shimizu, S., Nakamura, M., Umeki, T., Kazama, T., Yoshida, J., . . . Miyamoto, Y. (2022). 50-Tb/s (1 Tb/s × 50 ch) WDM transmission on two 6.25-Thz bands using hybrid inline repeater of PPLN-based OPAs and incoherent-forward-pumped DRA. In Optical fiber communication conference (OFC) 2022 (p. Th4A.8). Optica Publishing Group. https://doi.org/10.1364/OFC.2022.Th4A.8
Kritcher, A. L., Zylstra, A. B., Callahan, D. A., Hurricane, O. A., Weber, C. R., Clark, D. S., . . .Yang, S. T. (2022). Design of an inertial fusion experiment exceeding the Lawson criterion for ignition. Physical Review E, 106(2), 025201. https://doi.org/10.1103/PhysRevE.106.025201
Lazzeretti, L., Capone, F., Cinti, T. (2011). Open innovation in city of art: The case of laser technologies for conservation in Florence. City, Culture and Society, 2(3), 159-168. https://doi.org/10.1016/j.ccs.2011.09.001
Lian, C., Vagionas, C., Alexoudi, T., Pleros, N., Youngblood, N., Ríos, C. (2022). Photonic (computational) memories: tunable nanophotonics for data storage and computing. Nanophotonics, 1117, 3823-3854. https://doi.org/10.1515/nanoph-2022-0089
Liu, Z., Cheng, S., Zhang, Y., Jin, W., Li, X., Li, Y., . . . Yuan, L. (2022). Intelligent all-fiber device: storage and logic computing. Photonics Research, 10(2), 357-363. https://doi.org/10.1364/PRJ.439506
Maiman, T. H. (1960). Optical and microwave-optical experiments in ruby. Physical Review Letters, 4(11), 564-566. https://doi.org/10.1103/PhysRevLett.4.564
Margarone, D., Bonvalet, J., Giuffrida, L., Morace, A., Kantarelou, V., Tosca, M., . . . Batani, D. (2022). In-target proton-boron nuclear fusion using a PW-class laser. Applied Sciences, 12(3),1444. https://doi.org/10.3390/app12031444
MCTI. (2021). Ibfóton. MCTI, Brasil. https://files.cercomp.ufg.br/weby/up/3/o/Folder_IBFóton_e_Sisfóton.pdf?1651583682
Moretti, P., Iwanicka, M., Melessanaki, K., Dimitroulaki, E., Kokkinaki, O., Daugherty, M., . . . Costanza-Miliani, L. C. (2010). Laser cleaning of paintings: in situ optimization of operative parameters through non-invasive assessment by optical coherence tomography (OCT), reflection FT-IR spectroscopy and laser induced fluorescence spectroscopy (LIF). Heritage Science, 7, 44. https://doi.org/10.1186/s40494-019-0284-8
Müller, M., Krehel, M. (2020, mayo). Holograms as security features: Origination, development, and perception. Photonics Spectra, 65675. https://www.photonics.com/Articles/Holograms_as_Security_Features_Origination/a65675
NASA. (2021). Hubblesite. https://hubblesite.org/science
NASA. (2022a). James Webb Space Telescope. https://webb.nasa.gov/index.html
NASA. (2022b). Webb’s mirrors. https://jwst.nasa.gov/content/observatory/ote/mirrors/index.html
Nevin, A., Spoto, G., Anglos, D. (2012). Laser spectroscopies for elemental and molecular analysis in art and archaeology. Applied Physics A, 106, 339-361. https://doi.org/10.1007/s00339-011-6699-z
NPI. (2013). National photonics initiative. https://www.lightourfuture.org/home/about-npi.aspx
NQI. (2018). National quantum initiative. https://www.quantum.gov/
NRC. (2013). Optics and photonics: Essential technologies for our nation. Washington, DC: The National Academies Press. https://doi.org/10.17226/13491
NSF. (2022). The state of US science and engineering 2022 (Tech. Rep.). https://ncses.nsf.gov/indicators
OPTICA. (2022). Optica industry reports. Optics and photonics: The impact on a global economy. (Tech. Rep.). http://opg.optica.org/abstract.cfm?URI=OIDA-2022-12
ORNL. (2022, mayo). Frontier supercomputer debuts as world’s fastest, breaking Exascale barrier. Oak Ridge National Laboratory, USA. https://www.ornl.gov/news/frontier-supercomputerdebuts-worlds-fastest-breaking-exascale-barrier
Pastoor, S., Wöpking, M. (1997). 3-D displays: A review of current technologies. Displays, 17(2), 100-110. https://doi.org/10.1016/S0141-9382(96)01040-2
Phillips, W. D. (1997). Laser cooling and trapping of neutral atoms. In Les Prix Nobel 1997 (p. 130-175). Almqvist and Wiksell International, Stockholm, Sweden.
Phillips, W. D. (1998). Nobel lecture: Laser cooling and trapping of neutral atoms. Review of Modern Physics, 70(3), 721-741. https://doi.org/10.1103/RevModPhys.70.721
Photonics21. (2019). Europe’s age of light! https://www.photonics21.org/download/ppp-services/photonics-downloads/Europes-age-of-light-Photonics-Roadmap-C1.pdf
Photonics21. (2022). Photonics 21. https://www.photonics21.org/about-us/
ProMéxico. (2016). Hacia un México más brillante: mapa de ruta de óptica y fotónica. https://docplayer. es/39899429-Hacia-un-mexico-mas-brillante-mapa-de-ruta-de-fotonica-y-optica.html
Royo, S., Ballesta-Garcia, M. (2019). An overview of lidar imaging systems for autonomous vehicles. Applied Sciences, 9(19), 4093. https://doi.org/10.3390/app9194093
Samadbeik, M., Yaaghobi, D., Bastani, P., Abhari, S., Rezaee, R., Garavand, A. (2018). The applications of virtual reality technology in medical groups teaching. Journal of Advances in Medical Education & Professionalism, 6(3), 123-129. https://pubmed.ncbi.nlm.nih.gov/30013996/
Schermelleh, L., Ferrand, A., Huser, T., Eggeling, C., Sauer, M., Biehlmaier, O., Drummen, G. (2019). Super-resolution microscopy demystified. Nature Cell Biology, 21, 72-84. https://doi.org/10.1038/s41556-018-0251-8
Schneegass, S., Amft, O. (2017). Smart textiles. Springer Cham. https://doi.org/10.1007/978-3-319-50124-6
SPIE. (2022). Optics and photonics global salary report 2022. (Tech. Rep.). https://www.spie.org/documents/CareerCenter/2022-Global-Salary-Report.pdf
Strickland, D., Mourou, G. (1985). Compression of amplified chirped optical pulses. Optics Communications, 563, 219-221. https://doi.org/10.1016/0030-4018(85)90120-8
Taubenblatt, M. A. (2012). Optical interconnects for high-performance computing. Journal of Lightwave Technology, 30(4), 448-457. https://doi.org/10.1109/JLT.2011.2172989
Teeng, C., Lim, C. K., Rafi, A., Tan, K., Mokhtar, M. (2022). Comprehensive systematic review on virtual reality for cultural heritage practices: coherent taxonomy and motivations. Multimedia Systems, 28, 711-726. https://doi.org/10.1007/s00530-021-00869-4
Tollefson, J. (2021). US achieves laser-fusion record: what it means for nuclear-Weapons research. Nature, 597(2), 163-164. https://doi.org/10.1038/d41586-021-02338-4
Torner, L., Calvo, M., Guzmán, A. (2007). Óptica y fotónica: contexto iberoamericano. Transatlántica de educación, ISSN 1870-6428, (3), 128-140. https://www.researchgate.net/publication/28202766_Optica_y_Fotonica_contexto_iberoamericano
Willner, A. (2019). Optical fiber telecommunications (Vol. VII). Academic Press. https://www.elsevier.com/books/optical-fiber-telecommunications-vii/willner/978-0-12-816502-7
Yamaguchi, M., Dimroth, F., Geisz, J. F., Ekins-Daukes, N. J. (2021). Multi-junction solar cells paving the way for super high-efficiency. Journal of Applied Physics, 129, 240901. https://doi.org/10.1063/5.0048653
Yin, K., He, Z., Xiong, J., Zou, J., Li, K., Wu, S.-T. (2021). Virtual reality and augmented reality displays: advances and future perspectives. Journal of Physics: Photonics, 3(2), 022010.https://doi.org/10.1088/2515-7647/abf02e
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2022 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales