Óptica y fotónica: ciencia y tecnología de la luz
PDF

Cómo citar

Guzmán Hernández, A. M. . (2022). Óptica y fotónica: ciencia y tecnología de la luz. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 46(181), 920–938. https://doi.org/10.18257/raccefyn.1748

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

Este artículo de revisión presenta el panorama actual de las múltiples tecnologías basadas en la luz que se han hecho indispensables en nuestra vida diaria y que seguirán teniendo impacto en ella y en la economía mundial. Con el objetivo de motivar la formulación de un plan nacional de desarrollo de la investigación y apropiación de la tecnología fotónica en Colombia, se presentan los propósitos generales de algunas iniciativas regionales y nacionales de investigación y desarrollo en óptica y fotónica.

https://doi.org/10.18257/raccefyn.1748

Palabras clave

Óptica | Fotónica | Óptica Cuántica | Óptica Atómica | Plasmónica
PDF

Citas

Ajima, Y. (2022). Optical connection of top-level supercomputers: current status and future expectations. In R. T. Chen & H. Schröder (Eds.), Optical interconnects XXII (Vol. 12007, pp. 11 – 19). SPIE. https://doi.org/10.1117/12.2607916

Aspect, A., Dalibard, J., Roger, G. (1982, Dec). Experimental Test of Bell’s Inequalities Using Time-varying Analyzers. Physical Review Letters, 49, 1804-1807. https://link.aps.org/doi/10.1103/PhysRevLett.49.1804

Barrera, J. F., Mira, A., Torroba, R. (2013). Optical encryption and QR codes: Secure and noisefree information retrieval. Optical Express, 21(5), 5373-5378. https:// doi.org/10.1364/OE.21.005373

Berkovich, Y.A., Konovalova, O., Smolyanina, S.O., Erokhin, A. N., Averchevab, O.V., Bassarskayab, M., Kochetovab, G.V., Zhigalovab, T.V., YakovlevacI, O.S., Tarakanovc, I.G. (2017). LED crop illumination inside space green-houses. REACH, 6, 11-24. https://doi.org/10.1016/j.reach.2017.06.001

Bobin, J. (2020). 50 years ago: the first nuclear fusion reactions induced by laser radiation. Reflets de la Physique, 67, 21-25. https://inis.iaea.org/search/search.aspx?orig_q=RN:520712055

Bogue, R. (2015). Lasers in manufacturing: a review of technologies and applications. Assembly Automation, 35(2), 161-165. https://doi.org/10.1108/AA-07-2014-066

Bouwmeester, D., Pan, J.-W., Daniell, M., Weinfurter, H., Zeilinger, A. (1999, Feb). Observation of three-photon Greenberger-Horne-Zeilinger entanglement. Physical Review Letters, 82, 1345-1349. https://link.aps.org/doi/10.1103/PhysRevLett.82.1345

Calegari, F., Sansone, G., Stagira, S., Vozzi, C., Nisoli, M. (2016). Advances in attosecond science. Journal of Physics B: Atomic, Molecular and Optical Physics, 49(6), 062001. https://doi.org/10.1088/0953-4075/49/6/062001

Chan, J., Toth, C. K. (2018). Topographic laser ranging and scanning, 2nd. edition. CRC Press, Taylor and Francis Group. https://doi.org 10.1201/9781315154381

Chen, C.-C., González-Escudero, R., Minář, J., Pasquiou, B., Bennetts, S., Schreck, F. (2022). Continuous Bose–Einstein condensation. Nature, 606(3), 683-687. https://doi.org/10.1038/s41586-022-04731-z

Choi, S., Jung, K., Noh, S. D. (2015). Virtual reality applications in manufacturing industries: Past research, present findings, and future directions. Concurrent Engineering, 23(1), 40-63. https://doi.org/10.1177/1063293X14568814

Chua, C. K., Matham, M. V., Kim, Y.-J. (2017). Lasers in 3D printing and manufacturing. World Scientific. https://doi.org/10.1142/9500

Clauser, J. F., Horne, M. A., Shimony, A., Holt, R. A. (1969, Oct). Proposed experiment to test local hidden-variable theories. Physical Review Letters, 23, 880-884. https://link.aps.org/doi/10.1103/PhysRevLett.23.880

Daukantas, P. (2010). A short history of laser light shows. OPN Optics & Photonics News, 44, 42-47. https://laserfest.org/news/opn-laser-shows.pdf

Davis, K. B., Mewes, M. O., Andrews, M. R., van Druten, N. J., Durfee, D. S., Kurn, D. M., Ketterle, W. (1995). Bose-Einstein condensation in a gas of sodium atoms. Physical Review Letters, 75, 3969-3973. https://doi.org/10.1103/PhysRevLett.75.3969

de Oliveira, M. E., Corrêa, C. G. (2020). Virtual reality and augmented reality applications in agriculture: a literature review. In 2020 22nd symposium on virtual and augmented reality (svr) (p. 1-9). https://doi.org/10.1109/SVR51698.2020.00017

Dudley, J. M. (2020). Light, Lasers, and the Nobel Prize. Advanced Photonics, 2(5), 050501. https://doi.org/10.1117/1.AP.2.5.050501

Einstein, A., Podolsky, B., Rosen, N. (1935, May). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47, 777-780. https://link.aps.org/doi/10.1103/PhysRev.47.777

France, R. M., Geisz, J. F., Song, T., Olavarria, W., Young, M., Kibbler, A., Steiner, M. A. (2022). Triple-junction solar cells with 39.5% terrestrial and 34.2% space efficiency enabled by thick quantum well superlattices. Joule, 6(5), 1121-1135. https://doi.org/10.1016/j.joule.2022.04.024

Franken, P. A., Hill, A. E., Peters, C. W., Weinreich, G. (1961). Generation of optical harmonics. Physical Review Letters, 7(4), 118-119. https://doi.org/10.1103/PhysRevLett.7.118

Geisz, J. F., France, R. M., Schulte, K. L., Steiner, M. A., Norman, A. G., Guthrey, H. L., Matthew, R., Young, M.R., Song, T., Moriarty, T. (2020). Six-junction III–V solar cells with 47.1% conversion efficiency under 143 suns concentration. Nature Energy, 5, 326-335. https://doi.org/10.1038/s41560-020-0598-5

John F Geisz, Ryan M France, Kevin L Schulte, Myles A Steiner, Andrew G Norman, Harvey L Guthrey, Glauber, R. J. (1963). The quantum theory of optical coherence. Physical Review, 130(6), 2529-2539. https://doi.org/10.1103/PhysRev.130.2529

Godin, A. G., Lounis, B., Cognet, L. (2014). Super-resolution microscopy Approaches for live cell imaging. Biophysical Journal, 107(8), 1777-1784. https://doi.org/10.1016/j.bpj.2014.08.028

Guo, B., Sun, J., Lu, Y., Jiang, L. (2019). Ultrafast dynamics observation during femtosecond lasermaterial interaction. International Journal of Extreme Manufacturing, 1(3), 032004. https://doi.org/10.1088/2631-7990/ab3a24

Guo, Q., Su, Y., Hu, T., Guan, H., Jin, S., Zhang, J., . . . Coops, N. C. (2021). Lidar boosts 3D ecological observations and modelings: A review and perspective. IEEE Geoscience and Remote Sensing Magazine, 9(1), 232-257. https://doi.org/10.1109/MGRS.2020.3032713

Guyon, O. (2018). Extreme adaptive optics. Annual Review of Astronomy and Astrophysics, 56(1), 315-355. https://doi.org/10.1146 annurev-astro-081817-052000

Guzmán, A. M. (1998). Óptica atómica ¿la óptica del año 2000? Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 22(84), 363-373. https://www.accefyn.com/revista/Vol_22/84/363-373.pdf

Guzmán, A. M. (2011). Worldwide community of optics at ICO-22 (No. 89). https://www.e-ico.org/blog/wp-content/uploads/2022/06/ICO_news_oct_11.pdf

Guzmán de García, A. (1984). Nonlinear processes in two-photon pumped atomic vapors (Tech. Rep.). Max-Planck-Institut fuer Quantenoptik, Garching (Germany, FR). https://www.osti.gov/biblio/6224722

Göppert-Mayer, M. (1931). Über Elementarakte mit zwei Quantensprüngen. Annalen Der Physik, 401(3), 273-294. https://doi.org/10.1002/andp.19314010303

Hamilton, D., McKechnie, J., Edgerton, E., Wilson, C. (2021). Immersive virtual reality as a pedagogical tool in education: a systematic literature review of quantitative learning outcomes and experimental design. Journal of Computers in Education, 8, 1-32. https://doi.org/10.1007/s40692-020-00169-2

Hering, P., Stry, S., Lay, J. P. (2010). Laser in environmental and life sciences. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-08255-3

Huang, Y., Hsiang, E.-L., Deng, M.-Y., Wu, S.-T. (2010). Mini-LED, micro-LED and OLED displays: present status and future perspectives. Light: Science & Applications - Nature, 9, 105. https://doi.org/10.1038/s41377-020-0341-9

Jelínková, H. (2013). Lasers for medical applications. Woodhead Publishing Series in Electronic and Optical Materials, Elsevier, United States of America. https://www.elsevier.com/books/lasers-for-medical-applications/jelinkova/978-0-85709-237-3

Jiang, L., Wang, A.-D., Li, B., Cui, T.-H., Lu, Y.-F. (2017). Electrons dynamics Control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application. Light: Science & Applications - Nature, 7, 17134. https://doi.org/10.1038/lsa.2017.134

Joe, H., Yun, H., Jo, S., Martin B.G., Byung-Kwon Min, J. (2018). A review on optical fiber sensors for Environmental monitoring. International Journal of Precision Engineering and Manufacturing-Green Technology, 5, 173-191. https://doi.org/10.1007/s40684-018-0017-6

Khan, M. N. (2014). Understanding LED illumination. CRC Press, Taylor and Francis Group. https://www.routledge.com/Understanding-LED-Illumination/Khan/p/book/9780367867102

Kirkland, A. H. (2022, julio/agosto). Optics & art. Optics and Photonics News, 30-39. https://www.optica-opn.org/home/articles/volume_33/july_august_2022/features/optics_art/

Kobayashi, T., Shimizu, S., Nakamura, M., Umeki, T., Kazama, T., Yoshida, J., . . . Miyamoto, Y. (2022). 50-Tb/s (1 Tb/s × 50 ch) WDM transmission on two 6.25-Thz bands using hybrid inline repeater of PPLN-based OPAs and incoherent-forward-pumped DRA. In Optical fiber communication conference (OFC) 2022 (p. Th4A.8). Optica Publishing Group. https://doi.org/10.1364/OFC.2022.Th4A.8

Kritcher, A. L., Zylstra, A. B., Callahan, D. A., Hurricane, O. A., Weber, C. R., Clark, D. S., . . .Yang, S. T. (2022). Design of an inertial fusion experiment exceeding the Lawson criterion for ignition. Physical Review E, 106(2), 025201. https://doi.org/10.1103/PhysRevE.106.025201

Lazzeretti, L., Capone, F., Cinti, T. (2011). Open innovation in city of art: The case of laser technologies for conservation in Florence. City, Culture and Society, 2(3), 159-168. https://doi.org/10.1016/j.ccs.2011.09.001

Lian, C., Vagionas, C., Alexoudi, T., Pleros, N., Youngblood, N., Ríos, C. (2022). Photonic (computational) memories: tunable nanophotonics for data storage and computing. Nanophotonics, 1117, 3823-3854. https://doi.org/10.1515/nanoph-2022-0089

Liu, Z., Cheng, S., Zhang, Y., Jin, W., Li, X., Li, Y., . . . Yuan, L. (2022). Intelligent all-fiber device: storage and logic computing. Photonics Research, 10(2), 357-363. https://doi.org/10.1364/PRJ.439506

Maiman, T. H. (1960). Optical and microwave-optical experiments in ruby. Physical Review Letters, 4(11), 564-566. https://doi.org/10.1103/PhysRevLett.4.564

Margarone, D., Bonvalet, J., Giuffrida, L., Morace, A., Kantarelou, V., Tosca, M., . . . Batani, D. (2022). In-target proton-boron nuclear fusion using a PW-class laser. Applied Sciences, 12(3),1444. https://doi.org/10.3390/app12031444

MCTI. (2021). Ibfóton. MCTI, Brasil. https://files.cercomp.ufg.br/weby/up/3/o/Folder_IBFóton_e_Sisfóton.pdf?1651583682

Moretti, P., Iwanicka, M., Melessanaki, K., Dimitroulaki, E., Kokkinaki, O., Daugherty, M., . . . Costanza-Miliani, L. C. (2010). Laser cleaning of paintings: in situ optimization of operative parameters through non-invasive assessment by optical coherence tomography (OCT), reflection FT-IR spectroscopy and laser induced fluorescence spectroscopy (LIF). Heritage Science, 7, 44. https://doi.org/10.1186/s40494-019-0284-8

Müller, M., Krehel, M. (2020, mayo). Holograms as security features: Origination, development, and perception. Photonics Spectra, 65675. https://www.photonics.com/Articles/Holograms_as_Security_Features_Origination/a65675

NASA. (2021). Hubblesite. https://hubblesite.org/science

NASA. (2022a). James Webb Space Telescope. https://webb.nasa.gov/index.html

NASA. (2022b). Webb’s mirrors. https://jwst.nasa.gov/content/observatory/ote/mirrors/index.html

Nevin, A., Spoto, G., Anglos, D. (2012). Laser spectroscopies for elemental and molecular analysis in art and archaeology. Applied Physics A, 106, 339-361. https://doi.org/10.1007/s00339-011-6699-z

NPI. (2013). National photonics initiative. https://www.lightourfuture.org/home/about-npi.aspx

NQI. (2018). National quantum initiative. https://www.quantum.gov/

NRC. (2013). Optics and photonics: Essential technologies for our nation. Washington, DC: The National Academies Press. https://doi.org/10.17226/13491

NSF. (2022). The state of US science and engineering 2022 (Tech. Rep.). https://ncses.nsf.gov/indicators

OPTICA. (2022). Optica industry reports. Optics and photonics: The impact on a global economy. (Tech. Rep.). http://opg.optica.org/abstract.cfm?URI=OIDA-2022-12

ORNL. (2022, mayo). Frontier supercomputer debuts as world’s fastest, breaking Exascale barrier. Oak Ridge National Laboratory, USA. https://www.ornl.gov/news/frontier-supercomputerdebuts-worlds-fastest-breaking-exascale-barrier

Pastoor, S., Wöpking, M. (1997). 3-D displays: A review of current technologies. Displays, 17(2), 100-110. https://doi.org/10.1016/S0141-9382(96)01040-2

Phillips, W. D. (1997). Laser cooling and trapping of neutral atoms. In Les Prix Nobel 1997 (p. 130-175). Almqvist and Wiksell International, Stockholm, Sweden.

Phillips, W. D. (1998). Nobel lecture: Laser cooling and trapping of neutral atoms. Review of Modern Physics, 70(3), 721-741. https://doi.org/10.1103/RevModPhys.70.721

Photonics21. (2019). Europe’s age of light! https://www.photonics21.org/download/ppp-services/photonics-downloads/Europes-age-of-light-Photonics-Roadmap-C1.pdf

Photonics21. (2022). Photonics 21. https://www.photonics21.org/about-us/

ProMéxico. (2016). Hacia un México más brillante: mapa de ruta de óptica y fotónica. https://docplayer. es/39899429-Hacia-un-mexico-mas-brillante-mapa-de-ruta-de-fotonica-y-optica.html

Royo, S., Ballesta-Garcia, M. (2019). An overview of lidar imaging systems for autonomous vehicles. Applied Sciences, 9(19), 4093. https://doi.org/10.3390/app9194093

Samadbeik, M., Yaaghobi, D., Bastani, P., Abhari, S., Rezaee, R., Garavand, A. (2018). The applications of virtual reality technology in medical groups teaching. Journal of Advances in Medical Education & Professionalism, 6(3), 123-129. https://pubmed.ncbi.nlm.nih.gov/30013996/

Schermelleh, L., Ferrand, A., Huser, T., Eggeling, C., Sauer, M., Biehlmaier, O., Drummen, G. (2019). Super-resolution microscopy demystified. Nature Cell Biology, 21, 72-84. https://doi.org/10.1038/s41556-018-0251-8

Schneegass, S., Amft, O. (2017). Smart textiles. Springer Cham. https://doi.org/10.1007/978-3-319-50124-6

SPIE. (2022). Optics and photonics global salary report 2022. (Tech. Rep.). https://www.spie.org/documents/CareerCenter/2022-Global-Salary-Report.pdf

Strickland, D., Mourou, G. (1985). Compression of amplified chirped optical pulses. Optics Communications, 563, 219-221. https://doi.org/10.1016/0030-4018(85)90120-8

Taubenblatt, M. A. (2012). Optical interconnects for high-performance computing. Journal of Lightwave Technology, 30(4), 448-457. https://doi.org/10.1109/JLT.2011.2172989

Teeng, C., Lim, C. K., Rafi, A., Tan, K., Mokhtar, M. (2022). Comprehensive systematic review on virtual reality for cultural heritage practices: coherent taxonomy and motivations. Multimedia Systems, 28, 711-726. https://doi.org/10.1007/s00530-021-00869-4

Tollefson, J. (2021). US achieves laser-fusion record: what it means for nuclear-Weapons research. Nature, 597(2), 163-164. https://doi.org/10.1038/d41586-021-02338-4

Torner, L., Calvo, M., Guzmán, A. (2007). Óptica y fotónica: contexto iberoamericano. Transatlántica de educación, ISSN 1870-6428, (3), 128-140. https://www.researchgate.net/publication/28202766_Optica_y_Fotonica_contexto_iberoamericano

Willner, A. (2019). Optical fiber telecommunications (Vol. VII). Academic Press. https://www.elsevier.com/books/optical-fiber-telecommunications-vii/willner/978-0-12-816502-7

Yamaguchi, M., Dimroth, F., Geisz, J. F., Ekins-Daukes, N. J. (2021). Multi-junction solar cells paving the way for super high-efficiency. Journal of Applied Physics, 129, 240901. https://doi.org/10.1063/5.0048653

Yin, K., He, Z., Xiong, J., Zou, J., Li, K., Wu, S.-T. (2021). Virtual reality and augmented reality displays: advances and future perspectives. Journal of Physics: Photonics, 3(2), 022010.https://doi.org/10.1088/2515-7647/abf02e

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2022 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales