Sobre el problema de Kronecker y conjuntos parcialmente ordenados con involución
PDF (English)

Cómo citar

Dorado , I., & Medina, G. (2023). Sobre el problema de Kronecker y conjuntos parcialmente ordenados con involución. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 47(185), 1045–1060. https://doi.org/10.18257/raccefyn.1975

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

Consideramos el clásico problema de Kronecker sobre dos operadores lineales entre dos espacios vectoriales de dimensión finita y presentamos una nueva solución corta usando una conexión entre la versión matricial del problema de Kronecker y el problema matricial asociado a un conjunto ordenado con involución.

https://doi.org/10.18257/raccefyn.1975

Palabras clave

Problema de Kronecker | Conjunto parcialmente ordenado con involución | Representación indescomponible | Problema matricial
PDF (English)

Citas

Auslander, M., Reiten, I., Smalø, S. O. (1997). Representation theory of artin algebras. Cambridge University Press.

Benson, D. J. (1995). Representations and cohomology (Vol. 1). Cambridge University Press. https://doi.org/10.1017/CBO9780511623615

Bondarenko, V. M., Zavadskij, A. G. (1991). Posets with an equivalence relation of tame type and of finite growth. Conference Proceedings, Canadian Mathematical Society, 11, 67-88.

Cifuentes, V. (2021). Algorithms of differentiation for posets with an involution [Doctoral dissertation, Universidad Nacional de Colombia]. Bogotá.

De Vries, H. (1984). Pairs of linear mappings. Indagationes Mathematicae (Proceedings), 87(4), 449-452. https://doi.org/10.1016 1385-7258(84)90047-7

Dieudonné, J. (1946). Sur la réduction canonique des couples de matrices. Bulletin de la Société Mathématique de France, 74, 130-146. https://doi.org/10.24033/bsmf.1380

Dmytryshyn, A., da Fonseca, C. M., Rybalkina, T. (2016) Classification of pairs of linear mappings between two vector spaces and between their quotient space and subspace. Linear Algebra and its Applications, 509, 228-246. https://doi.org/https: //doi.org/10.1016/j.laa.2016.07.016

Gabriel, P., Roiter, A. V. (1992). Representations of finite-dimensional algebras (A.Kostrikin I. Shafarevich, Eds.; Vol. 73). Springer-Verlag. Gantmacher, F. R. (1959). The theory of matrices. MIR Titles.

Kronecker, L. (1890). Algebraische reduction der schaaren bilinearer formen. Sitzungsber. Akad. Berlin, 763-776.

Medina, G., Zavadskij, A. G. (2004). The four subspace problem: An elementary solution. Linear Algebra and its Applications, 392, 11-23.

Nazarova, L. A., Roiter, A. V. (1973). Categorical matrix problems and the brauer-thrall conjecture. Inst. Mat. AN UkSSR, 73.9, 1-100 Preprint.

Pareigis, B. (1970). Categories and functors. Academic Press.

Ringel, C. M. (1984). Tame algebras and integral quadratic forms (Vol. 1099). Springer Berlin, Heidelberg. https://doi.org/10.1007/bfb0072873

Schiffler, R. (2014). Quiver representations. Springer-Verlag.

Schubert, H. (1972). Categories. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-65364-31

Simson, D. (1992). Linear representations of partially ordered sets and vector space categories. Gordon; Breach Science Publishers.

Weierstrass, K. (1868). Zur theorie der quadratischen und bilinearen formen. Monatsber. Akad. Wiss., 311-338.

Zavadskij, A. G. (1991). An algorithm for posets with an equivalence relation. Conference Proceedings, Canadian Mathematical Society, 11, 299-322.

Zavadskij, A. G. (2007). On the kronecker problem and related problems of linear algebra. Linear Algebra and its Applications, 425, 26-62. https://doi.org/10.1016/j.laa.2007.03.011

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales