Nano-biointerface entre semiconductor y membrana celular: fenómenos fisicoquímicos implicados en la nanotoxicidad y la capacidad antifúngica de las nanopartículas de óxido de cinc
PDF

Cómo citar

Rodríguez-Páez, J. E. (2021). Nano-biointerface entre semiconductor y membrana celular: fenómenos fisicoquímicos implicados en la nanotoxicidad y la capacidad antifúngica de las nanopartículas de óxido de cinc. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 45(177), 1053–1070. https://doi.org/10.18257/raccefyn.1513

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

La aplicación de la nanotecnología, específicamente de las nanopartículas en campos como la medicina, la remediación medioambiental y la agricultura pasa por conocer y entender las interacciones que ocurren entre estas y el sistema biológico, para lo cual es necesario abordar el estudio de la nano-biointerface. Con base en resultados obtenidos en el estudio de la capacidad antifúngica y antibacterial de las nanopartículas de óxido de cinc (ZnO-NPs), se hizo una revisión de ciertos fenómenos fisicoquímicos que podrían ocurrir en la interface entre semiconductor y membrana celular y explicarían la acción de dichas nanopartículas. Concretamente, se analizaron los efectos de la naturaleza semiconductora del ZnO y la existencia de defectos puntuales en el sólido, así como de las interacciones de tipo entrópico, sobre un sistema biológico. Con base en estos procesos fisicoquímicos, se estructuraron modelos cualitativos de mecanismos que permitirían explicar los efectos de la presencia de las ZnO-NPs en cultivos de diversos hongos (Omphalia sp., Colletotrichum sp. y Phoma sp.), tales como la inhibición de su crecimiento y la alteración de su ultraestructura, y de la bacteria Escherichia coli, en la cual causarían la inhibición del crecimiento hasta en un ⁓70 % y una concentración mínima inhibitoria (CMI50) de 30,40 µg/mL, sin incidencia de radiación UV.

https://doi.org/10.18257/raccefyn.1513

Palabras clave

nano-biointerface; interacciones entrópicas; semiconductor; defectos puntuales; patógenos.
PDF

Referencias

Abbasi, B. A., Iqbal, J., Ahmad, R., Zia, L., Kanwal, S., Mahmood, T., Wang, C., Chen, J. T., (2020). Bioactivities of Geranium wallichianum Leaf Extracts Conjugated with Zinc Oxide Nanoparticles. Biomolecules 10(1): 38.

Agredo-Trochez, Y. A., Molano-Cabezas, A. C. (2020). obtención de nanopartículas de óxido de magnesio (MgO) y óxido de cobre (CuO) por una ruta química y estudio de su actividad fungicida sobre el hongo Omphalia sp. Trabajo de Grado programa Ingeniería Física – Popayán, Colombia: Universidad del Cauca.

Alghuthaymi, M. A., Rajkuberan, C., Rajiv, P., Kalia, A., Bhardwaj, K., Bhardwaj, P., Abd-Elsalam, K. A., Valis, M., Kuca, K. (2021). Nanohybrid antifungals for control of plant diseases: current status and future perspectives, J. Fungi 7: 48.

Arakh, M., Saleem, M., Mallick, B. C., Jha, S. (2015). The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle. Sci. Rep. 5: 9578.

Arciniegas-Grijalba, P. A., Patiño-Portela, M. C. (2015). Evaluación in-vitro de la capacidad antifúngica de nanopartículas de ZnO sobre cepas de Phoma sp. y Erythricium salmonicolor, agentes causales de enfermedades en el cafeto (Coffea arabica L.). Trabajo de Grado programa Biología – Popayán, Colombia: Universidad del Cauca.

Arciniegas-Grijalba, P. A., Patiño-Portela, M. C., Mosquera-Sánchez, L. P., Guerrero-Vargas, J. A., Rodríguez-Páez, J. E. (2017). ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor, Appl. Nanosci. 7: 225-241.

Arciniegas-Grijalba, P. A., Patiño-Portela, M. C., Mosquera-Sánchez, L. P., Guerra Sierra, B. E., Muñoz Florez, J. E., Erazo-Castillo, L. A., Rodríguez-Páez, J. E. (2019). ZnO-based nanofungicides: Synthesis, characterization and their effect on the coffee fungi Mycena citricolor and Colletotrichum sp. Mater. Sci. Eng. C 98: 808-825.

Benítez-Salazar, M. I. (2021). Obtención de nanopartículas de óxido de cinc por síntesis química y verde, y determinación de su capacidad antibacterial. Trabajo de Grado programa Ingeniería Física – Popayán, Colombia: Universidad del Cauca.

Bowman, S.M., Free, S.J. (2006). The structure and synthesis of the fungal cell wall, Bioessays 28(8): 799 808.

Brian, S. W., Mudun Kotuwa, I. A., Rupasinghe, T., Grassian, V. H. (2011). Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: Influence of pH, ionic strength, size and adsorption of humic acid. Langmuir 27: 6059-6068.

Cai, K., Wang, A. Z., Yin, L., Cheng, J. (2017). Bio-nano interface: The impact of biological environment on nanomaterials and their delivery properties. Journal of Controled Release 263: 211-222.

Ciofani, G. (Ed) (2018). Smart nanoparticles for biomedicine. Cambridge, United States: Elsevier Inc. De, M., Ghosh, P. S., Rotello, V. M. (2008). Applications of Nanoparticles in Biology. Adv. Mater. 20: 42254241.

De Lucas-Gil, E., Leret, P., Monte-Serrano, M., Reinosa, J. J., Enriquez, E., Del Campo, A., Cañete, M., Menéndez, Fernández, J. F., Rubio-Marcos, F. (2018). ZnO nanoporous spheres with broad-spectrum antimicrobial activity by physico chemical interactions. ACS Appl. Nano Mater. 1: 3214-3225.

De Lucas-Gil, E., Reinosa, J. J., Neuhaus, K., Vera-Londoño, L., Martín-González, M., Fernández, J. F., Rubio-Marcos, F. (2017). Exploring new mechanisms for effective antimicrobial materials: Electric contact – killing based on multiple Schottky barriers. ACS Appl. Mater. Interfaces 9(31): 26219-26225.

DeHoff, R. (2006). Thermodinamics in materials science. Second edition. Boca Ratón, USA: CRC Taylor & Francis Group, LLC.

Demir, E. (2020). A review on nanotoxicity and nanogenotoxicity of different shapes of nanomaterials. J Appl Toxicol. 41: 118 – 147.

Erazo, A., Mosquera, S. A., Rodríguez-Páez, J. E. (2019). Synthesis of ZnO nanoparticles with different morphology: Study of their antifungal effect on strains of Aspergillus niger and Botrytis cinérea, Materials Chemistry and Physics 234: 172–184.

Faisal, M., Saquib, Q., Alatar, A. A., Al-Khedhairy, A. A. (Eds) (2018). Phytotoxicity of nanoparticles. Cham, Switzerland: Springer Nature.

Frederick, K. K., Marlow, M. S., Velentine, K. G., Wand, A. J. (2007). Conformational entropy in molecular recognotion by proteins. Nature 448: 325-329.

Gerisher, H. (1990). The impact of semiconductors on the concepts of electrochemistry. Electrochem. Acta 35: 1677-1699.

Goppert, T. M., Muller, R. H. (2005). Adsorption kinetics of plasma proteins on solid lipid nanoparticles for drug targeting. Int. J. Pharm 302: 172-186.

Gudkov, S. V., Burmistrov, D. E., Serov, D. A., Rebezov, M. B., Semenova, A. A., Lisitsyn, A. B. (2021). A mini review of antibacterial properties of ZnO nanoparticles, Front. Phys. 9: 641481.

Gunkel, F., Christensen, D. V., Chen, Y. Z., Pryds, N. (2020). Oxygen vacancies: The (in)visible friend of oxide electronics. Appl. Phys Lett. 116: 120505.

Hu, J., Lipowsky, R., Weikl, T. R. (2013). Binding constants of membrane–anchored receptors and ligands depend strongly on the nanoscale roughness of membranes. Proc. Nal. Acad. Sci. U.S.A. 110: 15283 15288.

Jaaniso, R., Tan, O. K. (Eds) (2013). Semiconductor gas sensors. Philadelphia, USA: Woodhead Publishing.

Jedsukontorn, T., Ueno, T., Saito, N., Hunsom, M. (2018). Mechanistic aspect based on the role of reactive oxidizing species (ROS) in macroscopic level on the glycerol photooxidation over defected and defected-free TiO2. J. Photochem. Photobiol. A Chem. 367: 270–281.

Jiang, Y., Tian, B. (2018). Inorganic semiconductor biointerfaces. Nature Rev/Materials 3: 473-490. Li, G. Blake, G. R., Palstra, T. T. M. (2017). Vacancies in functional materials for clean energy storage and harvesting: the perfect imperfection. Chem. Soc. Rev. 46: 1693-1706.

Lichterman, M. F., Hu, S., Richter, M. H., Crumlin, E. J., Axnanda, S., Lewis, N. S. Liu, Z., Lewerenz, H. J. (2015). Direct observation of the energetics at a semiconductor/liquid junction by operando x-ray photoelectron spectroscopy. Energy Environ. Sci. 8: 2409-2416.

Liu, Y. Zhao, Y., Sun, B., Chen, C. (2013). Understanding the toxicity of carbon nanotubes. ACC Chem. Res. 46: 702-713.

López-Valdez, F., Fernández.Luqueño, F. (Eds) (2018). Agricultural nanobiotechnology. Cham, Switzerland: Springer Nature.

Lyklema, J. (1993). Fundamentals of interface and colloid science: Fundamentals. Volume 1. Second Edition. San Diego, USA: Academic Press Limited.

Ma, H., Williams, P. L., Diamond, S. A. (2013). Ecotoxicity of manufactured ZnO nanoparticles - A review, Environmental Pollution 172: 76-85.

Medina, J., Bolaños H., Mosquera‑Sanchez, L. P., Rodriguez‑Paez, J. E. (2018). Controlled synthesis of ZnO nanoparticles and evaluation of their toxicity in Mus musculus mice, International Nano Letters 8: 165–179.

Min, Y., Akhulut, M., Kristiansen, K., Golan, Y., Israelachvili, J. (2008). The role of interparticle and external forces in nanoparticle assembly. Nature Mater. 7: 527-538.

Mosquera Sánchez, L. P. (2021). Caracterización morfológica genética y patogénica del hongo colletotrichum spp en café y evaluación del efecto de nanopartículas de ZnO sobre el patógeno. Tesis Doctoral en desarrollo del Programa de Doctorado en Ciencias Agrarias – Palmira, Colombia: Universidad Nacional de Colombia.

Mosquera-Sánchez, L.P., Arciniegas-Grijalba, P.A., Patiño-Portela, M. C., Guerra–Sierra, B. E., Muñoz Florez, J. E., Rodríguez-Páez, J. E. (2020). Antifungal effect of zinc oxide nanoparticles (ZnO-NPs) on Colletotrichum sp., causal agent of anthracnose in coffee crops, Biocatalysis and Agricultural Biotechnology 25: 101579.

Mu, Q., Jiang, G., Chen, L., Zhou, H., Fourches, D., Tropsha, A., Yan, B. (2014). Chemical basis of interactions between engineered nanoparticles and biological systems. Chem. Rev. 114: 7740-7781.

Nel, A.E., Mädler, L., Velegel, D., Xia, T., Hork, E. M. V., Somasundaran, P., Klaessig, F., Castranova, V., Thompson, M. (2009). Understanding biophysicochemical interaction at the nano-biointerface. Nature Mater. 8: 543-557.

Nel, A., Xia, T., Mädler, L., Li, N. (2006). Toxic potential of materials at the nanolevel. Science 311: 622-627.

Nosaka, Y., Nosaka, A. Y. (2017). Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 117(17): 11302–11336.

Nozik, A. J., Memming, R. (1996). Physical chemistry of semiconductor – liquid interfaces. J. Phys. Chem. 100: 13061-13078.

Ohshima, H. (Ed). (2012). Electrical phenomena at interfaces and biointerfaces. Hoboken - New Jersey, USA: John Wiley & Sons Inc.

Padmavathy, N., Vijayaraghavan, R. (2008). Enhanced bioactivity of ZnO nanoparticles - an antimicrobial study. Sci. Technol. Adv. Mater. 9: 035004.

Parashar, S. K. S., Murty, B. S., Repp, S., Weber, S., Erdem, E. (2012) Investigation of intrinsic defects in core-shell structured ZnO nanocrystals. J. Appl. Phys. 111(11): 113712.

Patiño-Portela, M. C., Arciniegas-Grijalba, P. A., Mosquera-Sánchez, L. P., Guerra Sierra, B. E., Muñoz Florez, J. E., Erazo-Castillo, L. A., Rodríguez-Páez, J. E. (2021). Effect of method of synthesis on antifungal ability of ZnO nanoparticles: Chemical route vs green route, Advances in Nano Research 10: 191-210.

Prasanna, V. L., Vijayaraghavan, R. (2015). Insight into the mechanism of antibacterial activity of ZnO – surface defects mediated reactive oxygen species even in dark. Langmuir 31(33): 9155–9162.

Pulido-Reyes, G., Leganes, F., Fernández-Piñas, F., Rosal, R. (2017). Bio-nano interface and environment: A critical review. Envriron. Toxicol. Chem. 36: 3181-3193.

Pulido-Reyes, G., Rodea-Palomares, I., Das, S. Sakthivel, T. S. Leganes, F., Rosal, R. Seal, S., Fernández Piñares, F. (2015). Untangling the biological effects of cerium oxide nanoparticles: The role of Surface valence states. Sci. Rep. 5: 15613.

Rahman, M., Laurent, S., Tawil, N., Yahia, L., Mahmoudi, M. (2013). Protein – nanoparticle interactions: The bio-nano interface. Heidelberg, Germany: Springer-Verlag.

Ren, C. L., Ma, Y. Q. (2009). Structure and organization of nanosized-inclusion-containing bilayer membranas. Phys. Rev. E 80: 011910.

Rhoderick, E. H. (1980). Metal semiconductor contacts. Oxford, United Kingdom: Oxford University Press.

Rodríguez-Páez, J. E. (2013). Síntesis de óxidos de interés industrial. Popayán, Colombia: SAVAMA impresiones.

Rodríguez-Páez, M., Ochoa-Muñoz, Y., Rodríguez-Páez, J. E. (2019). Efficient removal of glyphosate based herbicide from water using ZnO nanoparticles (ZnO-NPs). Biocatalysis and Agricultural Biotechnology 22: 101434.

Romashchenko, A. V., Kan, T. W., Petrovski, D. V., Glinskaya, L. A., Moshkin, M. P., Moshkin, Y. M. (2017). Nanoparticles associate with intrinsically disordered RNA-binding proteins. ACS Nano 11: 1328-1339.

Salata, O. V. (2004). Applications of nanoparticles in biology and medicine. Journal of Nanobiotechnology 2:3.

Sawai, J., Kawada, E., Kanou, F., Igarashi, H., Hashimoto, A., Kokugan, T., Shimizu, M. (1996). Detection of active oxygen generated from ceramic powders having antibacterial activity. J. Chem. Eng. Jpn. 29(4): 627–633.

Singh, S. (2019). Zinc oxide nanoparticles impacts: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Toxicology Mechanisms and Methods 29: 300-311.

Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., Hasan, H., Mohamad, D. (2015). Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism, Nano-Micro Lett. 7(3): 219–242.

Shapiro, S., Caspi, E. (1998). The steric course of enzymic hydroxylation at primary carbon atoms. Tetrahedron 54: 5005-5040.

Suib, S. L. (Ed). (2013). New and future developments in catalysis: Solar photocatalysis. Amsterdam, The Netherlands: Elsevier B. V.

Sze, S. M., Ng, K. K. (2007). Physics semiconductor devices. Hoboken - New Jersey, USA: John Wiley & Sons Inc.

Tian, X., Chong, Y., Ge, C. (2020). Understanding the nano-bio interactions and the corresponding biological responses. Frontiers in Chemistry 8: article 446.

Vargas, M. A., Rivera, E. M., Diosa, J. E., Mosquera, E. E., Rodríguez-Páez, J. E. (2021). Nanoparticles of ZnO and Mg-doped ZnO: Synthesis, characterization and efficient removal of methy orange (MO) from aqueous solution. Ceramics International 47: 15668-15681.

Verma, A., Stellaci, F. (2010). Effect of surface properties on nanoparticle – cell interactions. Small 10: 12 21.

Verma, S. K., Jha, E., Kumar Panda, P., Das, J. K., Thirumurugan, A., Suar, M., Parashar, S. K. S. (2018). Molecular aspects of core-shell intrinsic defect induced enhanced antibacterial activity of ZnO nanocrystals. Nanomedicine (Lond.) 13(1): 43-68.

Wang, B., Min, J., Zhao, Y., Sang, W., Wang, C. (2009). The grain boundary related p-type conductivity in ZnO films prepared by ultrasonic spray pyrolysis. Appl. Phys. Lett. 94: 192101-192103.

Wendt, S., Sprunger, P. T. Lira, E., Madsen, G. K. H., Li, Z., Hansen, J. O., Matthiesen, J., Blekinge Rasmussen, A., Laegsgaard, E., Hammer, B., Besenbacher, F. (2008). The role of interstitial sites in the Ti3d defect state in the band of titania. Science 320: 1755-1759.

Winkler, P., Zeininger, J., Suchorski, Y., Stöger-Pollach, M., Zeller, P., Amati, M., Gregoratti, L., Rupprechter, G. (2021). How the anisotropy of surface oxide formation influences the transient activity of a surface reaction, Nat. Commun. 12: 69.

Xie, Y., He, Y., Irwin, P. L., Jin, T., Shi, X. (2011). Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 77(7): 2325– 2331.

Xu, G., Huang, Z., Chen, P., Cui, T., Zhang, X., Miao, B., Yan, L. T. (2017). Optimal reactivity and improved self-healing capability of structurally dynamic polymers grafted on janus nanoparticles governed by chain stiffness and spatial organization. Small 13(13): 1603155.

Xu, X., Chen, D., Yi, Z., Jiang, M., Wang, L. Zhou, Z., Fan, X., Wang, Y., Hui, D. (2013). Antimicrobial mechanism based on H2O2 generation at oxygen vacancies in ZnO crystals. Langmuir 29(18): 5573 5580.

Yan, B., Zhou, H., Gardea-Torresdey, J. L. (Eds) (2017). Bioactivity of engineered nanoparticles. Gatewayeast – Singapore, Singapore: Springer Nature Singapore Pte Ltd.

Yan, D., Li, Y. Hoo, J., Chen, R., Dai, L., Wang, S. (2017). Defect chemistry of nonprecious-metal electrocatalysis for oxygen reactions. Adv. Mater. 29: 1606459.

Yang, H., Liu, C., Yang, D., Zhang, H., Xi, Z. (2009). Comparative study cytotoxicity, oxadite stress and genotoxicity induced by four typical nanomaterials: The role of particle size, shape and composition. J. Appl. Toxicol. 25(1): 69-78.

Zeno, W. F., Thettle, A. S., Wang, L., Snead, W. T., Lafer, M. E., Stachowiak, J. C. (2019). Molecular mechanisms of membrane curvature sensing by a disorderd protein. J. Am. Chem. Soc. 141: 10361 10371.

Zhang, N., Gao, C., Xiong, Y. (2019). Defect engineering: A versatile tool for tuning the activation of key molecules in photocatalytic reactions. Journal of Energy Chemistry 37: 43-57.

Zhang, N., Li, X., Ye, H., Chen, S., Ju, H., Liu, D., Lin, Y., Ye, W., Wang, C., Xu, Q., Zhu, J., Song, L., Jiang, J., Xiong, Y. (2016). Oxide defect engineering enables to couple solar energy into oxygen activation. J. Am. Chem. Soc. 138: 8928-8935.

Zhang, S., Gao, H., Bao, G. (2015). Physical principles of nanoparticle cellular endocytosis. ACS Nano 9(9): 8655-8671.

Zhang, Z., Yates, J. T. (2012). Band bending in semiconductor: Chemical and physical consequences at surfaces and interfaces. Chem. Rev. 112: 5520-5551.

Zhao, Y., Zhang, Z. Feng, W. (Eds) (2016). Toxicology of nanomaterials. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co.

Zhu, G., Huang, Z., Xu, Z., Yan, L. T. (2018). Tailoring interfacial nanoparticle organization through entropy. Acc. Chem. Res. 51: 900-909.

Zhu, G., Xu, Z., Yan, L. T. (2020). Entropy at bio-nano interfaces. Nano Lett. 20: 5616-5624.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2021 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales