Implicaciones metodológicas e inconsistencias de la Tercera Comunicación Nacional sobre Cambio Climático de Colombia
PDF

Cómo citar

Arias, P. A., Villegas, L. D., Mesa, O. J., Pabón, J. D., Arango, J., Arango-Aramburo, S., Armenteras, D., Barahona, R., Berrouet, L., Barco, J., Cardona, Y., Carvajal-Escobar, Y., Ceballos-Bonilla, L. I., Cerón, W. L., Escobar, J. H., González, C., Hoyos, I. C. ., Hoyos, N., Jaramillo, C., Jiménez-Sánchez, G., Martínez, J. A., Poveda, G., Quesada, B., Quintero-Vallejo, E., Rendón, Ángela M., Ruiz-Carrascal, D., Salazar, A., Salazar, J. F., Sánchez, A., Vieira, S. C., Villegas, J. C., Villegas-Palacio, C., & Zuluaga, M. D. (2022). Implicaciones metodológicas e inconsistencias de la Tercera Comunicación Nacional sobre Cambio Climático de Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 46(180), 769–794. https://doi.org/10.18257/raccefyn.1705

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a

Métricas Alternativas


Dimensions

Resumen

Las Comunicaciones Nacionales sobre Cambio Climático (CNCC) son un mecanismo para que los países informen sus avances en mitigación y adaptación, y constituyen uno de los elementos de base para la política sobre cambio climático a escala nacional. Colombia ha emitido tres CNCC. La tercera plantea un escenario que considera las proyecciones de diversos modelos incluidos en la quinta fase del Proyecto de Comparación de Modelos Acoplados (Coupled Model Intercomparison Project, CMIP), el cual se estima como el promedio de las proyecciones correspondientes a las cuatro trayectorias de concentración representativa (Representative Concentration Pathways,RCP) presentadas en el quinto reporte de evaluación del Panel Intergubernamental sobre Cambio Climático. Cada una de estas RCP representa una trayectoria de concentración de gases de efecto invernadero (GEI) para un escenario particular de crecimiento poblacional, económico y tecnológico que conduce a una posible trayectoria de evolución del sistema climático. En este estudio se comparan las proyecciones presentadas en la Tercera CNCC con las obtenidas directamente de los modelos empleados. Nuestros resultados demuestran que al utilizarse un promedio de RCP se pierden escenarios alternos que podrían ser importantes a la hora de considerar posibles futuros diferentes y anulan la utilidad de plantear diversas trayectorias de emisiones de GEI. Más aun, una comparación entre la Segunda y la Tercera CNCC muestra proyecciones de precipitación opuestas para diferentes regiones del país, lo cual es de particular importancia, pues el escenario de cambio climático planteado en la Tercera CNCC sirve de referencia para la toma de decisiones en materia de cambio climático a nivel nacional.

https://doi.org/10.18257/raccefyn.1705

Palabras clave

Cambio climático | Comunicaciones nacionales de cambio climático (CNCC) | Proyecciones climáticas | Escenario de cambio climático de Colombia | CMIP5
PDF

Referencias

Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D., Hogg, E.H., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J.-H., Allard, G., Running, S.W., Semerci, A., Cobb, N. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259(4), 660-684.

Arias, P.A., Garreaud, R., Poveda, G., Espinoza, J.C., Molina-Carpio, J., Masiokas, M., Viale, M., Scaff, L., van Oevelen, P.J. (2021a). Hydroclimate of the Andes. Part II: Hydroclimate variability and sub-continental patterns. Frontiers in Earth Science, 8(505467), 1-25. doi: 10.3389/feart.2020.505467

Arias, P.A., Ortega, G., Villegas, L.D., Martínez, J.A. (2021b). Colombian climatology in CMIP5/CMIP6 models: persistent biases and improvements. Revista Facultad de Ingeniería Universidad de Antioquia, 100, 75-96, DOI:10.17533/udea.redin.20210525

Arnell, N.G., Gosling, S.N. (2013). The impacts of climate change on river flow regimes at the global scale. Journal of Hydrology, 486, 351-364.

Banco Mundial. (2012). Análisis de la gestión del riesgo de desastres en Colombia: un aporte para la construcción de políticas públicas. Banco Internacional de Reconstrucción y Fomento/Banco Mundial Región de América Latina y El Caribe.

Bedoya-Soto, J.M., Aristizábal, E., Carmona, A.M., Poveda, G. (2019). Seasonal Shift of the Diurnal Cycle of Rainfall Over Medellin’s Valley, Central Andes of Colombia (1998-2005). Frontiers in Earth Science, 7. doi: 10.3389/feart.2019.00092

Bonilla-Ovallos, C.A., Mesa-Sánchez, O.J. (2017). Validación de la precipitación estimada por modelos climáticos acoplados del proyecto de intercomparación CMIP5 en Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 41(158), 107-118. doi:10.18257/raccefyn.427

Bruckner, M. (2012). Climate change vulnerability and the identification of least developed countries. United Nations, Department of Economics and Social Affairs.

Cai, W., McPhaden, M.J., Grimm, A.M., Rodrigues, R.R., Taschetto, A.S., Garreaud, R.D., Dewitte, B., Poveda, G., Ham, Y.G., Santoso, A., Ng, B., Anderson, W., Wang, G., Geng,T., Jo, H.S., Marengo, J.A., Alves, L.M., Osman, M., Li, S., Wu, L., Karamperidou, C., Takahashi K., Vera C. (2020). Climate impacts of El Niño-Southern Oscillation on South America. Nature Reviews Earth & Environment, 1, 215-231. doi:10.1038/s43017-020-0040-3

Castellanos, E., Lemos, M.F., Astigarraga, L., Chacón, N., Cuvi, N., Huggel, C., Miranda, L., Moncassim Vale, M., Ometto, J.P., Peri, P.L., Postigo, J.C., Ramajo, L., Roco, L., Rusticucci, M. (2022). Central and South America. In: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press. In Press.

Chaves, M. E., Gómez, S.R., Ramírez, W., Solano, C. (Eds.). (2021). Evaluación Nacional de Biodiversidad y Servicios Ecosistémicos de Colombia. Resumen para Tomadores de Decisión. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Programa de Naciones Unidas para el Desarrollo y el Centro Mundial de Monitoreo para la Conservación del Programa de las Naciones Unidas para el Medio Ambiente, Ministerio Federal de Medio Ambiente, Conservación de la Naturaleza y Seguridad Nuclear de la República Federal de Alemania. Bogotá D. C., Colombia. http://hdl.handle.net/20.500.11761/35942

CMNUCC. (2003). Informe de la Conferencia de las Partes sobre su octavo período de sesiones, celebrado en Nueva Delhi del 23 de octubre al 1 de noviembre de 2002 (p. 2). Descargado de http://rcc.marn.gob.sv/xmlui/bitstream/handle/123456789/97/17cp8.pdf?sequence=1&isAllowed=y

Collins, M., Knutti, R., Arblaster, J., Dufresne, J.L., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski, W.J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A.J., Wehner, M. (2013). Chapter 12 - Long-term climate change: Projections, commitments and irreversibility. In: Climate Change 2013: The Physical Science Basis. IPCC Working Group I Contribution to AR5. Eds. IPCC, Cambridge: Cambridge University Press

Doblas-Reyes, F.J., Sörensson, A.A., Almazroui, M., Dosio, A., Gutowski, W.J., Haarsma, R., Hamdi, R., Hewitson, B., Kwon, W.T., Lamptey, B.L., Maraun, D., Stephenson, T.S., Takayabu, I., Terray, L., Turner, A., Zuo, Z. (2021). Linking Global to Regional Climate Change. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change}, Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.), Cambridge University Press. In Press.

Eslava, J.A., Pabón, J.D. (2001). Proyecto “Proyecciones climáticas e impactos socioeconómicos del cambio climático en Colombia”. Meteorología Colombiana, 3, 1-8.

Espinoza, J. C., Garreaud, R., Poveda, G., Arias, P.A., Molina-Carpio, J., Masiokas, M., Viale, M., Scaff, L. (2020). Hydroclimate of the Andes. Part I: main climatic features. Frontiers Earth Sciences, 8, 64. doi:10.3389/feart.2020.00064

Gao, L., Bernhardt, M., Schulz, K., Chen, X. (2017). Elevation correction of ERA-Interim temperature data in the Tibetan Plateau. International Journal of Climatology, 37, 3540-3552. https://doi.org/10.1002/joc.4935

Giorgi, F., Gutowski, W.J. (2015). Regional Dynamical Downscaling and the CORDEX Initiative. Annual Review of Environment and Resources, 40(1), 467-490. doi: 10.1146/ annurevenviron-102014-021217

Grossi, A., Dinku, T. (2022). Enhancing national climate services: How systems thinking can accelerate locally led adaptation. Perspective, 5(1), 74-83, doi: https://doi.org/10.1016/j.oneear.2021.12.007

Gutowski, W.J., Ullrich, P.A., Hall, A., Leung, L.R., O’Brien, T.A., Patricola, C. M., Zarzycki, C. (2020). The Ongoing Need for High-Resolution Regional Climate Models: Process Understanding and Stakeholder Information. Bulletin of the American Meteorological Society, 101(5), E664–E683. doi: 10.1175/BAMS-D-19-0113.1

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biaviti, G., Bidlot, J., Bonavita, M., De Chiara, G., Thépaut, J-N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorology Society, 146, 1999-2049. https://doi.org/10.1002/qj.3803

Hoegh-Guldberg, O., Jacob, D., Taylor, M., Bindi, M., Brown, S., Camilloni, I., Diedhiou, A., Djalante, R., Ebi, K.L., Engelbrecht, F., Guiot, J., Hijioka, Y., Mehrotra, S., Payne, A., Seneviratne, S.I., Thomas, A., Warren, R., Zhou, G. (2018). Impacts of 1.5ºC Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I.Gomis, E. Lonnoy, T.Maycock, M.Tignor, and T. Waterfield (eds.)]. In Press.

Hoyos, N., Escobar, J., Restrepo, J.C., Arango, A.M., Ortiz, J.C. (2013). Impact of the 2010–2011 La Niña phenomenon in Colombia, South America: the human toll of an extreme weather event. Applied Geography, 39, 16-25.

Huffman, G.J., Bolvin, D.T., Nelkin, E.J., Wolff, D.B., Adler, R.F., Gu, G., Hong, Y., Bowman, K.P., Stocker, E.F. (2007). The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. Journal of Hydrometeorology, 8(1), 38-55.

Hulme, M., Sheard, N. (1999). Escenarios de Cambio Climático para Países de los Andes del Norte, Unidad de Investigación Climática (Climate Research Unit – CRU), Norwich, Reino Unido,6pp

IDEAM. (2001). Colombia Primera Comunicación Nacional ante la Convención Marco de las Naciones Unidas sobre el Cambio Climático. Colombia. Trade Link Ltda. Descargado de http://www.ideam.gov.co/documents/40860/219937/primera-comunicacion--nacional/b99663bb-9023-47d1-b54a-41f74cca0b1e

IDEAM. (2010). República de Colombia Segunda Comunicación Nacional ante la Convención Marco de las Naciones Unidas sobre Cambio Climático. Bogotá, Colombia. Editorial Scripto Ltda.Descargado de https://unfccc.int/sites/default/files/resource/Segunda%20comunicacion%20nacional%20Espanol%20Colombia.pdf

IDEAM, PNUD, MADS, DNP, y CANCILLERÍA. (2015a). Escenarios de Cambio Climático para Precipitación y Temperatura para Colombia 2011-2100 Herramientas Científicas para la Toma de Decisiones – Estudio Técnico Completo: Tercera Comunicación Nacional de Cambio Climático. Bogotá, Colombia. Unatintamedios. ISBN 978-958-8902-56-2.Descargado de http://documentacion.ideam.gov.co/openbiblio/bvirtual/022963/escenarios_cambioclimaticodepartamental/Estudio_tecnico_completo.pdf

IDEAM, PNUD, MADS, DNP, y CANCILLERÍA. (2015b). Nuevos Escenarios de Cambio Climático para Colombia 2011-2100 Herramientas Científicas para la Toma de Decisiones – Enfoque Nacional - Regional: Tercera Comunicación Nacional de Cambio Climático (pp. 9). ISBN 978-958-8902-57-9. Descargado de http://documentacion.ideam.gov.co/openbiblio/bvirtual/022965/documento_nacional_regional.pdf

IDEAM, PNUD, MADS, DNP, y CANCILLERÍA. (2017). Tercera Comunicación Nacional De Colombia a La Convención Marco De Las Naciones Unidas Sobre Cambio Climático (CMNUCC). Tercera Comunicación Nacional de Cambio Climático. IDEAM, PNUD, MADS, DNP, CANCILLERÍA, FMAM. Bogotá D.C., Colombia. Descargado de http://documentacion.ideam.gov.co/openbiblio/bvirtual/023731/TCNCC_COLOMBIA_ CMNUCC_2017_2.pdf

IPCC. (2000). Special report on emissions scenarios: a special report of Working Group III of the Intergovernmental Panel on Climate Change (Nebojsa Nakicenovic y Rob Swart, Eds.). Cambridge; New York: Cambridge University Press. (OCLC: ocm44652561)

IPCC. (2014). Cambio climático 2014: Informe de síntesis. Contribución de los Grupos de trabajo I, II y III al Quinto Informe de Evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático [Equipo principal de redacción, R.K. Pachauri y L.A. Meyer (eds.)] (pp. 9 y 13). IPCC, Ginebra, Suiza, 157 pp. Descargado de https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full_es.pdf

IPCC. (2018). Summary for Policymakers. In Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. ([Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)])

IPCC. (2021). Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp.3-32, doi:10.1017/9781009157896.001

IPCC. (2022a). Summary for Policymakers. In: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press. In Press

IPCC. (2022b). Summary for Policymakers. In: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA. doi: 10.1017/9781009157926.001. In Press

Jaramillo-Robledo, A., Chaves-Córdoba, B. (2000). Distribución de la precipitación en Colombia mediante conglomeración estadística. Cenicafé, 51(2), 102-113.

Kiehl, J.T., Hack, J.J., Bonan, G.B., Boville, B.A., Williamson, D.L., Rasch, P.J. (1998). The National Center for Atmospheric Research Community Climate Model: CCM3, Journal of Climate, 11(6), 1131-1149.

Loaiza-Cerón, W, Kayano, M.T., Andreoli, R.V., Avila-Diaz, A., de Souza, I.P, Souza R.A.F.(2021). Pacific and Atlantic Multidecadal Variability Relations with the Choco and Caribbean Low-Level Jets during the 1900–2015 Period. Atmosphere, 12(9), 1120. https://doi.org/10.3390/atmos12091120

Magrin, G.O., Marengo, J., Boulanger, J.P., Buckeridge, M.S., Castellanos, E., Poveda, G., Scarano, F.R., Vicuña, S. (2014). Central and South America. In: Barros, V.R., et al., Eds., Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part B: Regional Aspects, Cambridge University Press, Cambridge, 1499-1566

Manciu, A., Krause, A., Rammig, A., Quesada, B. (2020). Impacts of land cover changes and global warming on climate in Colombia using the regional climate model WRF, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7093, https://doi.org/10.5194/egusphere-egu2020-7093

Martinez, J.A., Arias, P.A., Castro, C., Chang, H.I., Ochoa-Moya, C.A. (2019). Sea surface temperature-related response of precipitation in northern South America according to a WRF multi-decadal simulation. International Journal of Climatology, 39(4), 2136-2155. doi:https:// doi.org/10.1002/joc.5940

Martínez, J.A., Arias, P.A., Junquas, C., Espinoza, J.C., Condom, T., Dominguez, F., Morales, J.S. (2022). The Orinoco low-level jet and the cross-equatorial moisture transport over tropical South America: lessons from seasonal WRF simulations. Journal of Geophysical Research-Atmospheres, https://doi.org/10.1029/2021JD035603, in press.

Masui, T., Matsumoto, K., Hijioka, Y., Kinoshita, T., Nozawa, T., Ishiwatari, S., Kato, E., Shukla, P.R., Yagamata, Y., Kainuma, M. (2011). An emission pathway for stabilization at 6 Wm-2 radiative forcing. Climatic Change, 109(1-2), 59-76. doi: 10.1007/s10584-011-0150-5

McAdam, J. (2016). Climate Change-related Displacement of Persons. In: The Oxford Handbook of 2 International Climate Change Law [Gray, K.R., R. Tarasofsky, and C. Carlarne, (eds.)], Oxford 3 University Press, Oxford, p. pp. 519.

McInerney, D., Lempert, R., Keller, K. (2012). What are robust strategies in the face of uncertain climate threshold responses? Climatic change, 112(3), 547-568.

Mejía, J.F., Mesa, O.J., Poveda, G., Vélez, J.I., Hoyos, C.D., Mantilla, R.I., Barco, J., Cuartas, A., Montoya, M.I., Botero, B.A. (1999). Distribución espacial y ciclos anual y semianual de la precipitación en Colombia. Dyna, 127, 7-26.

Oglesby, R., Rowe, C., Grunwaldt, A., Ferreira, I., Ruiz, F., Campbell, J., Alvarado, L., Argenal, F., Olmedo, B., del Castillo, A., Lopez, P., Matos, E., Nava, Y., Perez, C., Perez, J. (2016). A High-Resolution Modeling Strategy to Assess Impacts of Climate Change for Mesoamerica and the Caribbean. American Journal of Climate Change, 5(2), 202-228. doi:10.4236/ ajcc.2016.52019

Ortega, G., P.A. Arias, P.A., Villegas, J.C., Marquet, P.A., Nobre, P. (2021). Present-day and future climate over Central and South America according to CMIP5/CMIP6 models. International Journal of Climatology, 41(15), 6713-6735. doi: 10.1002/joc.7221

Otto-Portner, H., Scholes, B., Agard, J., Archer, J., Arneth, E., Bai, X., Barnes, D., Burrows, M., Chan, L., Cheung, W.L., Diamond, S., Donatti, C., Duarte, C., Eisenhauer, N., Foden, W., Gasalla, M.A., Handa, C., Hickler, T., Hoegh-Guldberg, O., Ichii, K., Ngo, H.T. (2021). IPBES-IPCC co-sponsored workshop report synopsis on biodiversity and climate change. Zenodo. https://doi.org/10.5281/ZENODO.4782538

Pabón J.D., Eslava J.A., Pelkowski J., Montoya G.J., Vega E.E. (2001). Resultados de la simulación del clima por CCM3. Meteorología Colombiana, 4, 61-64.

Pabón-Caicedo, J.D., Arias, P.A., Carril, A.F., Espinoza, J.C., Fita-Borrel, L., Goubanova, K., Lavado, W., Masiokas, M., Solman, S., Villalba, R. (2020). Observed and projected hydroclimate changes in the Andes. Frontiers Earth Sciwncwa, 8, 61. doi:10.3389/feart.2020.00061

Pabón-Caicedo, J.D., Eslava-Ramírez, J.A., Gómez-Torres, R.E. (2001). Generalidades de la distribución espacial y temporal de la temperatura del aire y de la precipitación en Colombia. Meteorología Colombiana, 4, 47-59. (Bogotá, D.C. – Colombia).

Palomino-Lemus, R,. Córdoba-Machado, S., Gámiz-Fortis, S.R., Castro-Díez, Y., Esteban-Parra, M.J. (2015). Summer precipitation projections over northwestern South America from CMIP5 models. Global Planetary Change, 131, 11-23.

Palomino-Lemus, R., Córdoba-Machado, S., Gámiz-Fortis, S.R., Castro-Díez, Y., Esteban-Parra, M.J. (2017). Climate change projections of boreal summer precipitation over tropical America by using statistical downscaling from CMIP5 models. Environmental Research Letters, 12 124011.

Patt, A.G., Tadross, M., Nussbaumer, P., Asante, K., Metzger, M., Rafael, J., Goujon, A.,Brundrit, G. (2010). Estimating least-developed countries’ vulnerability to climate-related extreme events over the next 50 years. Proceedings of the National Academy of Sciences, 107(4), 1333-1337. doi: 10.1073/pnas.0910253107

Posada-Marín, J.A., Rendón, A.M., Salazar, J.F., Mejía, J.F., Villegas, J.C. (2019). WRF downscaling improves ERA-Interim representation of precipitation around a tropical Andean valley during El Niño: implications for GCM-scale simulation of precipitation over complex terrain. Climate Dynamics, 52(5), 3609-3629. doi: 10.1007/s00382-018-4403-0

Poveda, G. (2004). La hidroclimatología de Colombia: Una síntesis desde la escala inter-decadal hasta la escala diurna. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales, 28, 201-222.

Poveda, G., Álvarez, D.M., Rueda, O.A. (2011). Hydro-climatic variability over the Andes of Colombia associated with ENSO: a review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots. Climate Dynamics 36 (11-12), 2233-2249.doi:10.1007/s00382-010-0931-y

Poveda, G., Jaramillo, L., Vallejo, L.F. (2014). Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers. Water Resources Research, 50(1), 98-118. doi: https://doi.org/10.1002/2013WR014087

Poveda, G., Mesa, O. (1999). La Corriente de Chorro Superficial del Oeste (“del CHOCÓ”) y otras dos corrientes de chorro atmosféricas sobre Colombia: Climatología y Variabilidad durante las fases del ENSO. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales, 23, 517-528.

Poveda, G., Mesa, O.J. (2000). On the existence of Lloró (the rainiest locality on Earth): Enhanced ocean-land-atmosphere interaction by a low-level jet. Geophysical Research Letters, 27(11), 1675-1678. doi: https:// doi.org/10.1029/1999GL006091

Poveda, G., Mesa, O.J., Salazar, L.F., Arias, P.A., Moreno, H.A., Vieira, S.C., Alvarez, J.F. (2005). The Diurnal Cycle of Precipitation in the Tropical Andes of Colombia. Monthly Weather Review, 133(1), 228-240. doi: 10.1175/ MWR-2853.1

Poveda, G., Waylen, P.R., Pulwarty, R. (2006). Modern climate variability in northern South America and southern Mesoamerica. Palaeogeography Palaeoclimatology Palaeoecology 234, 3-27. doi: 10.1016/j.palaeo.2005.10.031

Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G., Nakicenovic, N., Rafaj, P. (2011). RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic Change, 109(1-2). 33-57. doi: 10.1007/s10584-011-0149-y

Riahi, K., van Vuuren, D.P., Kriegler, E., Edmonds, J., O’Neill, B.C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J.C., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, K., Hasegawa, T., Tavoni, M. (2017). The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Global Environmental Change, 42, 153-168. 10.1016/j.gloenvcha.2016.05.009

Roncancio, D., Cutter, S., Nardocci, A. (2020). Social vulnerability in Colombia. International Journal of Disaster Risk Reduction, 50, 101872. doi: 10.1016/j.ijdrr.2020.101872

Salazar, A., Sánchez-Andrade, A., Villegas, J.C., Salazar-Villegas, J.F., Ruiz-Carrascal, D., Sitch, S., Restrepo, J.D., Poveda, G., Feeley, K., Mercado, L., Arias, P.A., Sierra, C., Uribe, M., Pérez, J., Rendón, A.M., Murray-Tortarolo, G., Mercado-Bettín, D., Posada- Marín, J., Zhuang, Q., Qianlai, X., Dukes, J. (2018). The ecology of peace: Preparing Colombia for new political and planetary climates. Frontiers in Ecology and the Environment, 16(9). 525-531, doi:10.1002/fee.1950

Schwalm, C. R., Glendon, S., Duffy, P.B. (2020). RCP8.5 tracks cumulative CO2 emissions.Proceedings of the National Academy of Sciences, 117(33), 19656-19657. doi: 10.1073/pnas.2007117117

Sheridan, P., Smith, S., Brown, A., Vosper, S. (2010). A simple height-based correction fortemperature downscaling in complex terrain. Meteorological Applications, 17: 329-339.https://doi.org/10.1002/met.177

Sierra, J.P., Arias, P.A., Durán-Quesada, A.M.,Tapias, K.A., Vieira, S.C., Martínez, J.A. (2021) The Choco low-level jet: past, present and future. Climate Dynamics, 56, 2667-2692. doi:10.1007/s00382-020-05611-w

Sierra, J.P., Arias, P.A., Vieira, S.C. (2015). Precipitation over northern South America and its seasonal variability as simulated by the CMIP5 models. Advances in Meteorology, 1-23. doi:10.1155/2015/634720

Sierra, J.P., Arias, P.A., Vieira, S.C., Agudelo, J. (2018). How well do CMIP5 models simulate the low-level jet in western Colombia? Climate Dynamics, 51(5-6), 2247-2265. doi: https://doi.org/10.1007/s00382-017-4010-5

Thomson, A.M., Calvin, K.V., Smith, S.J., Kyle, G.P., Volke, A., Patel, P., Edmonds, J.A. (2011). RCP4.5: a pathway for stabilization of radiative forcing by 2100. Climatic Change, 109(1-2), 77-94, doi: 10.1007/s10584-011-0151-4

UNDP (United Nations Development Program). (2010). Mainstreaming climate change in Colombia screening for risks and opportunity. Decargado de: www.undp.org/content/dam/aplaws/publication/en/publications/environment-energy/www-ee-library/climate-change/mainstreaming-climatechange-in-colombia/CC%20risk%20Mainstreaming%20Climate%20Change%20in%20ColombiaEN.pdf

Urrea, V., Ochoa, A., Mesa, O. (2019). Seasonality of rainfall in Colombia. Water Resources Research, 55, 4149-4162, https://doi.org/10.1029/2018WR023316

Vallejo-Bernal, S.M., Urrea, V., Bedoya-Soto, J.M., Posada, D., Olarte, A., Cárdenas-Posso, Y., Ruiz-Murcia, F., Martinez, M.T., Petersen, W., Huffman, G.J., Poveda, G. (2021). Ground Validation of TRMM 3B43 V7 Precipitation Estimates over Colombia. Part I: Monthly and Seasonal Timescales. International. Journal of Climatology, 1(41), 601–624, doi: 10.1002/joc.6640

Van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G.C., Kram, T., Krey, V., Lamarque, J-F., Masui, T., Meinshausen, M., Nakicenovic, Smith, S.J., Rose, S. K. (2011). The representative concentration pathways: an overview. Climatic Change, 109(1), 5. doi: 10.1007/s10584-011-0148-z

Van Vuuren, D.P., Stehfest, E., den Elzen, M.G.J., Kram, T., van Vliet, J., Deetman, S., Isaac, M., Goldewijk, K.K., Hof, A., Beltran, A.M., Oosternrikj, R., van Ruijven, B. (2011). RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C. Climatic Change, 109(1-2), 95-116, doi: 10.1007/ s10584-011-0152-3

Yin, L., Fu, R., Shevliakova, E., Dickinson, R.E. (2013). How well can CMIP5 simulate precipitation and its controlling processes over tropical South America? Climate Dynamics, 41(11-12), 3127-3143, doi: 10.1007/s00382-012-1582-y

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2022 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales