Exponentes críticos estáticos, efectos de anisotropía, Hall y magneto-calórico, e interacciones magnéticas en cintas de aleaciones basadas en FeCr, FeCo y MnFe
PDF

Cómo citar

Rosales-Rivera, A. (2022). Exponentes críticos estáticos, efectos de anisotropía, Hall y magneto-calórico, e interacciones magnéticas en cintas de aleaciones basadas en FeCr, FeCo y MnFe. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 46(180), 656–674. https://doi.org/10.18257/raccefyn.1686

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

Se presenta aquí un estudio comparativo de los exponentes críticos (β, γ, δ), de la temperatura crítica Tc, la anisotropía magnética, el efecto Hall y el magneto-calórico, así como las interacciones agnéticas para las aleaciones [(Fe50Co50)75B20Si5]96Nb4, Fe65.5Cr8Cu1Nb3Si13.5B9, y Mn50Ni36Fe5Sn9, preparadas mediante la técnica denominada hilado en estado de fusión (meltspinning). Los anteriores parámetros críticos y el efecto magneto-calórico se determinaron a partir de mediciones de magnetización. Los valores (β, δ, TC) para [(Fe50Co50)75B20Si5]96Nb4 y Fe65.5Cr8Cu1Nb3Si13.5B9 fueron (0,34 ± 0,09; 4,50 ± 0,45; 660 ± 30 K), (0,52 ± 0,04; 3,62 ± 0,06; 481 ± 2 K), respectivamente, y para Mn50Ni36Fe5Sn9 fue (0,51 ± 0,03; 2,97 ± 0,03; 318 ± 8 K). Las curvas de resistividad Hall Vs. H exhiben un campo de inflexión HS, campo por debajo del cual se observan los efectos Hall ordinario y extraordinario. Por encima de HS, el efecto Hall ordinario predomina, en tanto que el extraordinario no se observa más. El valor de HS para [(Fe50Co50)75B20Si5]96Nb4  y Fe65.5Cr8Cu1Nb3Si13.5B9 fue 8 kOe y 4,42 kOe, respectivamente, y para Mn50Ni36Fe5Sn9 fue 1,84 kOe. El número de portadores de carga nc se determinó para H > HS, y su valor para Fe65.5Cr8Cu1Nb3Si13.5B9 y Mn50Ni36Fe5Sn9 fue 2,71 x 1019 cm-3 y 129 x 1019 cm-3, respectivamente. El cambio en la entropía magnética y la capacidad de enfriamiento relativa debido a un cambio de campo de 10 kOe se evaluaron y sus valores máximos en la proximidad de TC para [(Fe50Co50)75B20Si5]96Nb4, Fe65.5Cr8Cu1Nb3Si13.5B9, y Mn50Ni36Fe5Sn9 fueron (0,6; 0,75; 0,5) Jkg-1K-1 y (57,4; 56,6; 25,1) Jkg-1, respectivamente. Se analizaron los posibles efectos de las interacciones de intercambio y espín-orbita en los resultados anteriores.

https://doi.org/10.18257/raccefyn.1686

Palabras clave

Clases de universalidad | Exponentes críticos estáticos | Efecto Hall y efecto magnetocalórico | Aleaciones magnéticas
PDF

Citas

Aharoni, A. (1986). A possible interpretation of non-linear Arrots plots. Journal of Magnetism and Magnetic Materials, 58, 297-302.doi: https://doi.org/10.18257/raccefyn.1686

Arrott, A., Noakes, J.E. (1967). Approximate equation of state for nickel near its critical temperature. Physical Review Letters, 19, 786. https://doi.org/10.1103/PhysRevLett.19.786

Blázquez, J.S., Franco, V., Conde, A., Gottschall, T., Skokov, K.P., Gutfleisch, O. (2016). A unified approach to describe the thermal and magnetic hysteresis in Heusler alloys. Applied Physics Letters, 109, 122410-1. https://doi.org/10.1063/1.4963319

Blundell, S. (2001). Magnetism in Condensed Matter. London, Great Bretain: Oxford University Press.

Brück, E. (2005). Developments in magnetocaloric refrigeration. Journal of Physics D: Applied Physics, 38(23), R381-R391. https://doi.org/10.1088/0022-3727/38/23/R01

Buznikov, N.A., Kurlyandskaya, G. V. (2019). Magnetoimpedance in Symmetric and Non-Symmetric Nanostructured Multilayers: A Theoretical Study. Sensors, 19(8), 1761. https://doi.org/10.3390/s19081761

Campillo, G., Berger, A., Osorio, J., Pearson, J. E., Bader, S. D., Baca, E., Prieto, P. (2001).

Substrate dependence of magnetic properties of La0.67Ca0.33 MnO3 films. Journal of Magnetism

and Magnetic Materials, 237(1), 61-68. https://doi.org/10.1016/S0304-8853(01)00482-6

Collins, M. F. (1989). Magnetic Critical Scattering. New York, USA: Oxford University Press.

Franco, V., Conde, A. (2012). Magnetic refrigerants with continuous phase transitions: Amorphous

and nanostructured materials. Scripta Materialia, 67, 594-599. https://doi.org/10.1016/j.scriptamat.2012.05.004

Franco, V., Blázquez, J.S., Conde, A. (2006). Field dependence of the magnetocaloric effect in materials with a second order phase transition: A master curve for the magnetic entropy change. Applied Physics Letters, 89, 222512. https://doi.org/10.1063/1.239936

Franco, V., Blázquez, J.S., Ingale, B., Conde, A. (2012). The Magnetocaloric Effect and Magnetic Refrigeration Near Room Temperature: Materials and Models. Annual Review of Materials Research, 42, 305-342. https://doi.org/10.1146/annurevmatsci-062910-100356.

Franco, V., Conde, A., Kiss, L.F. (2008). Magnetocaloric response of FeCrB amorphous alloys: Predicting the magnetic entropy change from the Arrott–Noakes equation of state. Journal of Applied Physics, 104, 033903. https://doi.org/10.1063/1.2961310

Franco, V., Conde, A., Kuz’min, M.D., Romero-Enrique, J.M. (2009). The magnetocaloric effect in materials with a second order phase transition: Are TC and Tpeak necessarily coincident?. Journal of Applied Physics, 105, 07A917. https://doi.org/10.1063/1.3063666

Ghosh, S., Ghosh, A., Mandal, K. (2021). Reversible magnetocaloric effect and critical exponent análisis in Mn-Fe-Ni-Sn Heusler alloys. Journal of Alloys and Compounds. https://doi.org/10.1016/j.jallcom.2018.02.269

Gómez, M., Rosales-Rivera, A., Pineda-Gómez, P., Muraca, D., Sirkin, H. (2008). Thermal, structural and magnetic characterization of Co-based alloys. Microelectronics Journal, 39, 1242-1244. https://doi.org/10.1016/j.mejo.2008.01.088

Gonçalves, L.P., Soares, J., Machado, F.A., Rodrigues, A.R. (2006). Hall and giant magnetoimpedance effects in the Co70Fe5Si15B10 metallic glass. Journal of Non-Crystalline Solids, 3659-3662. https://doi.org/10.1016/j.jnoncrysol.2006.03.106

Griffiths, R. (1967). Thermodynamic Functions for Fluids and Ferromagnets near the Critical Point. Physical Review, 158(5), 176-187. https://doi.org/10.1103/PhysRev.158.176

Gschneidner, K.A., Pecharsky, J.K. (2000). Magnetocaloric Materials. Annual Review of Materials Science, 30, 387- 429. https://doi.org/10.1146/annurev.matsci.30.1.387

Kadanoff, L. P. (1976). Scaling, Universality and Operator Algebras. En C. Domb, & M. Green (Edits.), Phase Transitions and Critical Phenomena, Vol 5A, p 1 - 34). New York, USA: Academic Press Inc.

Knobel, M., Pirota, K.R. (2002). Giant magnetoimpedance: Concepts and recent progress. Journal of Magnetism and Magnetic Materials, 242-245, 33-40.

Knobel, M., Vázquez, M., Krauss, L. (2003). Giant magneto impedance. En Handbook of Magnetic Materials (Vol. 15, págs. 1- 9). Amsterdam: K. H. Buschow, Ed. Amsterdam, The Netherlands: Elsevier.

Kouvel, J.S. (1957). Methods for determining the Curie temperature of a ferromagnet. Report No.57-RL-1799, General Electric Research Lab.

Kouvel, J.S., Fisher, M.E. (1964). Detailed Magnetic Behavior of Nickel Near its Curie Point. Physical Review, 136, A1626.https://doi.org/10.1103/PhysRev.136.A1626

Luo, Q., Zhao, D. Q., Pan, M.X., Wang, W.H. (2006). Magnetocaloric effect in Gd-based bulk metallic glasses. Applied Physics Letters, 89, 081914:1-3. https://doi.org/10.1063/1.2338770

Machado, F. A., Da Silva, B. L., Montarroyos, E. (1993). Magnetoresistance of the random anisotropic Co70.4Fe4.6Si15B10 alloy. Journal of Applied Physics, 73, Art. no. 6387. https://doi.org/10.1063/1.352659

Machado, F.A., Martins, C.S., Rezende, S.M. (1995). Giant magnetoimpedance in the ferromagnetic alloy Co75−xFexSi15B10. Physical Review B, 51, Art. no. 3926. https://doi.org/10.1103/PhysRevB.51.3926

Makhotkin, V. E., Shurukhin, B. P., Lopatin, V. A., Marchukov, P. Y., Levin, Y. K. (1991). Magnetic field sensors based on amorphous ribbons. Sens. Actuators. A. Physics, 27, 759- 762. doi: https://doi.org/10.18257/raccefyn.1686

Melnikov, G.Y., Lepalovsky, V.N., Kurlyandskaya, G.V. (2022). GMI-Detection of a Magnetic Composite Imitating a Blood Vessel Clot. Russian Physics Journal, 64, 1880-1885. https://doi.org/10.1007/s1118202202536-1

Melo-Quintero, J.J., Rosales-Rivera, A., Giraldo-Daza, H. (2010). Hall effect and resistivity measurements in CoFe-based amorphous magnetic alloys. Momento, Revista de Física, 41, 37-48.

Panina, L. V., Mohri, K., Bushida K., Noda, M. (1994). Ultrasoft finemet thin films for magnetoimpedance microsensors. Journal of Applied Physics, 76, Art. no. 074010.

Phan, M.H., Peng, H. (2008). Giant magnetoimpedance materials: Fundamentals and applications. Progress in Material Science, 53, 323-420. https://doi.org/10.1016/j.pmatsci.2007.05.003

Provenzano, V., Shapiro, A.J., Shull, R.D. (2004). Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron. Nature, 429, 853-857. https://doi.org/10.1038/nature02657

Prudnikova, M.V., Kozlova, T.M., Prudnikov, V.N., Granosky, A.B. (1997). Hall effect and magnetoresistance in rapidly quenched FeB ribbons. Journal of Magnetism and Magnetic Materials, 166, 201 206. https://doi.org/10.1016/S0304-8853(96)00500-8

Remya, U.D., Athul, S.R., Arun, K., Swathi, S., Dzubinska, A., Reiffers, M., Ramamoorthi, N. (2021). Investigations on magnetic, magnetocaloric and transport properties of Co2Ti1-xSn1+x (x = 0.25, 0.5). National Conference on Physics and Chemistry of Materials: NCPCM2020.2369, pág. 020086. India: AIP Conference Proceedings. https://doi.org/10.1063/5.0061244

Rosales-Rivera, A., Gónzalez-Sánchez, R. F., Hernández-Parra, J. C., Velásquez-Salazar, A.,

Saccone, F. D. (2019). Shifting from Ising model to Heisenberg model critical behavior and the departure from these models in Fe73.5−xCrxCu1Nb3Si13.5B9. Journal of Magnetism andMagnetic Materials, 482, 251-261. https://doi.org/10.1016/j.jmmm.2019.03.031

Rosales-Rivera, A., González-Sánchez, R. F., Velásquez-Salazar, A. A., López-Tabares, J.,

Salazar-Henao, N. A., Gómez-Montoya, D. F., Saccone, F. D. (2021). Magnetic Critical Behavior, Hall and Magneto-Impedance Effects in Fe–Co-Based Metallic Glasses IEEE Transactions on Magnetics, 57(2), 4400206. https://doi.org/10.1109/TMAG.2020.3013294

Rosales-Rivera, A., Moscoso-Londoño, O., Muraca, D. (2012). Magnetization dynamics and magnetic hardening in amorphous FeBSi alloys. Revista Mexicana de Física, 58(2), 155-159.

Rosales-Rivera, A., Valencia, V. H., Pineda-Gómez, P. (2007). Three-peak behavior in giant magnetoimpedance effect in Fe73.5−xCrxNb3Cu1Si13.5B9 amorphous ribbons. Physica B, 398, 252-255. https://doi.org/10.1016/j.physb.2007.04.026

Rosales-Rivera, A., Valencia, V. H., Quintero, D. L., Pineda-Gómez, P., Gómez, M. M. (2006). Thermal, magnetic, and structural properties of soft magnetic FeCrNbCuSiB alloy ribbons. Physica B, 384, 169-171. https://doi.org/10.1016/j.physb.2006.05.217

Rushbrooke, G.S. (1963). On the Thermodynamics of the Critical Region for the Ising Problem. The Journal of Chemical Physics, 39(3),842. https://doi.org/10.1063/1.1734338

Saccone, F.D. (2021). Estudio de espectroscopia Mössbauer en aleaciones Heusler Mn50Ni41- xFexSn9 con x = 0, 5, y 10. Escrito-correo electrónico, Universidad de Buenos Aires, Buenos Aires C1063ACV, Argentina, Física, Facultad de Ingeniería. Obtenido de fsaccone@fi.uba.ar

Tishin, A.M., Spichkin, Y.I. (2003). The Magnetocaloric Effect and its Applications. Bristol, Great Bretain: Institute of Physics.

Wang, D., Peng, K., Gu, B., Han, Z., Tang, S., Qin, W., Du, Y. (2003). Influence of annealing on the magnetic entropy changes in FeMoZrNbBCu amorphous ribbons. Journal of Alloys and Compounds, 358, 312-315. https://doi.org/10.1016/S0925-8388(03)00075-6

Widom, B. (1965). Equation of State in the Neighborhood of the Critical Point. The Journal of Chemical Physics, 43(11), 3898. https://doi.org/10.1063/1.1696618

Wilson, K. G. & Kogut, J. (1974). The renormalization group and the ε-expansion. Physics Report, 12C(2), 75-200.

Wood, M. E. & Potter, W. H. (1985). General analysis of magnetic refrigeration and its optimization using a new concept: maximization of refrigerant capacity. Cryogenics, 25(12), 667-683.

https://doi.org/10.1016/0011-2275(85)90187-0

Yang, Z., Chlenova, A.A., Golubeva, E.V., Volchkov, S.O., Guo, P., Shcherbinin, S.V., Kurlyandskaya, G.V. (2019). Magnetoimpedance Effect in the Ribbon-Based Patterned Soft Ferromagnetic Meander Shaped Elements for Sensor Application. Sensors, 19(11), 2468 10.3390/s19112468. https://doi.org/10.3390/s19112468

Yang, Z., Lei, J., Lei, C., Zhou, Y., Wang, T. (2014). Effect of magnetic field annealing and size on the giant magnetoimpedance in micro-patterned Co-based ribbon with a meander structure. Applied Physics A, 116, 1847-1851. https://doi.org/10.1007/s00339-014-8343-1

Yeomans, J.M. (1992). Statistical Mechanics of Phase Transitions. New York, USA: Oxford University Press Inc.

Zou, J., Chen, Y., Li, X., Song, Y., Zhao, Z. (2019). Observation of the transition state of domain wall displacement and GMI effect of FINEMET/graphene composite ribbons. RSC Advances, 9 (67), 39133-39142. https://doi.org/10.1039/c9ra07642e

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2022 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales