Resumen
Se presenta aquí un estudio comparativo de los exponentes críticos (β, γ, δ), de la temperatura crítica Tc, la anisotropía magnética, el efecto Hall y el magneto-calórico, así como las interacciones agnéticas para las aleaciones [(Fe50Co50)75B20Si5]96Nb4, Fe65.5Cr8Cu1Nb3Si13.5B9, y Mn50Ni36Fe5Sn9, preparadas mediante la técnica denominada hilado en estado de fusión (meltspinning). Los anteriores parámetros críticos y el efecto magneto-calórico se determinaron a partir de mediciones de magnetización. Los valores (β, δ, TC) para [(Fe50Co50)75B20Si5]96Nb4 y Fe65.5Cr8Cu1Nb3Si13.5B9 fueron (0,34 ± 0,09; 4,50 ± 0,45; 660 ± 30 K), (0,52 ± 0,04; 3,62 ± 0,06; 481 ± 2 K), respectivamente, y para Mn50Ni36Fe5Sn9 fue (0,51 ± 0,03; 2,97 ± 0,03; 318 ± 8 K). Las curvas de resistividad Hall Vs. H exhiben un campo de inflexión HS, campo por debajo del cual se observan los efectos Hall ordinario y extraordinario. Por encima de HS, el efecto Hall ordinario predomina, en tanto que el extraordinario no se observa más. El valor de HS para [(Fe50Co50)75B20Si5]96Nb4 y Fe65.5Cr8Cu1Nb3Si13.5B9 fue 8 kOe y 4,42 kOe, respectivamente, y para Mn50Ni36Fe5Sn9 fue 1,84 kOe. El número de portadores de carga nc se determinó para H > HS, y su valor para Fe65.5Cr8Cu1Nb3Si13.5B9 y Mn50Ni36Fe5Sn9 fue 2,71 x 1019 cm-3 y 129 x 1019 cm-3, respectivamente. El cambio en la entropía magnética y la capacidad de enfriamiento relativa debido a un cambio de campo de 10 kOe se evaluaron y sus valores máximos en la proximidad de TC para [(Fe50Co50)75B20Si5]96Nb4, Fe65.5Cr8Cu1Nb3Si13.5B9, y Mn50Ni36Fe5Sn9 fueron (0,6; 0,75; 0,5) Jkg-1K-1 y (57,4; 56,6; 25,1) Jkg-1, respectivamente. Se analizaron los posibles efectos de las interacciones de intercambio y espín-orbita en los resultados anteriores.
Palabras clave
Citas
Aharoni, A. (1986). A possible interpretation of non-linear Arrots plots. Journal of Magnetism and Magnetic Materials, 58, 297-302.doi: https://doi.org/10.18257/raccefyn.1686
Arrott, A., Noakes, J.E. (1967). Approximate equation of state for nickel near its critical temperature. Physical Review Letters, 19, 786. https://doi.org/10.1103/PhysRevLett.19.786
Blázquez, J.S., Franco, V., Conde, A., Gottschall, T., Skokov, K.P., Gutfleisch, O. (2016). A unified approach to describe the thermal and magnetic hysteresis in Heusler alloys. Applied Physics Letters, 109, 122410-1. https://doi.org/10.1063/1.4963319
Blundell, S. (2001). Magnetism in Condensed Matter. London, Great Bretain: Oxford University Press.
Brück, E. (2005). Developments in magnetocaloric refrigeration. Journal of Physics D: Applied Physics, 38(23), R381-R391. https://doi.org/10.1088/0022-3727/38/23/R01
Buznikov, N.A., Kurlyandskaya, G. V. (2019). Magnetoimpedance in Symmetric and Non-Symmetric Nanostructured Multilayers: A Theoretical Study. Sensors, 19(8), 1761. https://doi.org/10.3390/s19081761
Campillo, G., Berger, A., Osorio, J., Pearson, J. E., Bader, S. D., Baca, E., Prieto, P. (2001).
Substrate dependence of magnetic properties of La0.67Ca0.33 MnO3 films. Journal of Magnetism
and Magnetic Materials, 237(1), 61-68. https://doi.org/10.1016/S0304-8853(01)00482-6
Collins, M. F. (1989). Magnetic Critical Scattering. New York, USA: Oxford University Press.
Franco, V., Conde, A. (2012). Magnetic refrigerants with continuous phase transitions: Amorphous
and nanostructured materials. Scripta Materialia, 67, 594-599. https://doi.org/10.1016/j.scriptamat.2012.05.004
Franco, V., Blázquez, J.S., Conde, A. (2006). Field dependence of the magnetocaloric effect in materials with a second order phase transition: A master curve for the magnetic entropy change. Applied Physics Letters, 89, 222512. https://doi.org/10.1063/1.239936
Franco, V., Blázquez, J.S., Ingale, B., Conde, A. (2012). The Magnetocaloric Effect and Magnetic Refrigeration Near Room Temperature: Materials and Models. Annual Review of Materials Research, 42, 305-342. https://doi.org/10.1146/annurevmatsci-062910-100356.
Franco, V., Conde, A., Kiss, L.F. (2008). Magnetocaloric response of FeCrB amorphous alloys: Predicting the magnetic entropy change from the Arrott–Noakes equation of state. Journal of Applied Physics, 104, 033903. https://doi.org/10.1063/1.2961310
Franco, V., Conde, A., Kuz’min, M.D., Romero-Enrique, J.M. (2009). The magnetocaloric effect in materials with a second order phase transition: Are TC and Tpeak necessarily coincident?. Journal of Applied Physics, 105, 07A917. https://doi.org/10.1063/1.3063666
Ghosh, S., Ghosh, A., Mandal, K. (2021). Reversible magnetocaloric effect and critical exponent análisis in Mn-Fe-Ni-Sn Heusler alloys. Journal of Alloys and Compounds. https://doi.org/10.1016/j.jallcom.2018.02.269
Gómez, M., Rosales-Rivera, A., Pineda-Gómez, P., Muraca, D., Sirkin, H. (2008). Thermal, structural and magnetic characterization of Co-based alloys. Microelectronics Journal, 39, 1242-1244. https://doi.org/10.1016/j.mejo.2008.01.088
Gonçalves, L.P., Soares, J., Machado, F.A., Rodrigues, A.R. (2006). Hall and giant magnetoimpedance effects in the Co70Fe5Si15B10 metallic glass. Journal of Non-Crystalline Solids, 3659-3662. https://doi.org/10.1016/j.jnoncrysol.2006.03.106
Griffiths, R. (1967). Thermodynamic Functions for Fluids and Ferromagnets near the Critical Point. Physical Review, 158(5), 176-187. https://doi.org/10.1103/PhysRev.158.176
Gschneidner, K.A., Pecharsky, J.K. (2000). Magnetocaloric Materials. Annual Review of Materials Science, 30, 387- 429. https://doi.org/10.1146/annurev.matsci.30.1.387
Kadanoff, L. P. (1976). Scaling, Universality and Operator Algebras. En C. Domb, & M. Green (Edits.), Phase Transitions and Critical Phenomena, Vol 5A, p 1 - 34). New York, USA: Academic Press Inc.
Knobel, M., Pirota, K.R. (2002). Giant magnetoimpedance: Concepts and recent progress. Journal of Magnetism and Magnetic Materials, 242-245, 33-40.
Knobel, M., Vázquez, M., Krauss, L. (2003). Giant magneto impedance. En Handbook of Magnetic Materials (Vol. 15, págs. 1- 9). Amsterdam: K. H. Buschow, Ed. Amsterdam, The Netherlands: Elsevier.
Kouvel, J.S. (1957). Methods for determining the Curie temperature of a ferromagnet. Report No.57-RL-1799, General Electric Research Lab.
Kouvel, J.S., Fisher, M.E. (1964). Detailed Magnetic Behavior of Nickel Near its Curie Point. Physical Review, 136, A1626.https://doi.org/10.1103/PhysRev.136.A1626
Luo, Q., Zhao, D. Q., Pan, M.X., Wang, W.H. (2006). Magnetocaloric effect in Gd-based bulk metallic glasses. Applied Physics Letters, 89, 081914:1-3. https://doi.org/10.1063/1.2338770
Machado, F. A., Da Silva, B. L., Montarroyos, E. (1993). Magnetoresistance of the random anisotropic Co70.4Fe4.6Si15B10 alloy. Journal of Applied Physics, 73, Art. no. 6387. https://doi.org/10.1063/1.352659
Machado, F.A., Martins, C.S., Rezende, S.M. (1995). Giant magnetoimpedance in the ferromagnetic alloy Co75−xFexSi15B10. Physical Review B, 51, Art. no. 3926. https://doi.org/10.1103/PhysRevB.51.3926
Makhotkin, V. E., Shurukhin, B. P., Lopatin, V. A., Marchukov, P. Y., Levin, Y. K. (1991). Magnetic field sensors based on amorphous ribbons. Sens. Actuators. A. Physics, 27, 759- 762. doi: https://doi.org/10.18257/raccefyn.1686
Melnikov, G.Y., Lepalovsky, V.N., Kurlyandskaya, G.V. (2022). GMI-Detection of a Magnetic Composite Imitating a Blood Vessel Clot. Russian Physics Journal, 64, 1880-1885. https://doi.org/10.1007/s1118202202536-1
Melo-Quintero, J.J., Rosales-Rivera, A., Giraldo-Daza, H. (2010). Hall effect and resistivity measurements in CoFe-based amorphous magnetic alloys. Momento, Revista de Física, 41, 37-48.
Panina, L. V., Mohri, K., Bushida K., Noda, M. (1994). Ultrasoft finemet thin films for magnetoimpedance microsensors. Journal of Applied Physics, 76, Art. no. 074010.
Phan, M.H., Peng, H. (2008). Giant magnetoimpedance materials: Fundamentals and applications. Progress in Material Science, 53, 323-420. https://doi.org/10.1016/j.pmatsci.2007.05.003
Provenzano, V., Shapiro, A.J., Shull, R.D. (2004). Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron. Nature, 429, 853-857. https://doi.org/10.1038/nature02657
Prudnikova, M.V., Kozlova, T.M., Prudnikov, V.N., Granosky, A.B. (1997). Hall effect and magnetoresistance in rapidly quenched FeB ribbons. Journal of Magnetism and Magnetic Materials, 166, 201 206. https://doi.org/10.1016/S0304-8853(96)00500-8
Remya, U.D., Athul, S.R., Arun, K., Swathi, S., Dzubinska, A., Reiffers, M., Ramamoorthi, N. (2021). Investigations on magnetic, magnetocaloric and transport properties of Co2Ti1-xSn1+x (x = 0.25, 0.5). National Conference on Physics and Chemistry of Materials: NCPCM2020.2369, pág. 020086. India: AIP Conference Proceedings. https://doi.org/10.1063/5.0061244
Rosales-Rivera, A., Gónzalez-Sánchez, R. F., Hernández-Parra, J. C., Velásquez-Salazar, A.,
Saccone, F. D. (2019). Shifting from Ising model to Heisenberg model critical behavior and the departure from these models in Fe73.5−xCrxCu1Nb3Si13.5B9. Journal of Magnetism andMagnetic Materials, 482, 251-261. https://doi.org/10.1016/j.jmmm.2019.03.031
Rosales-Rivera, A., González-Sánchez, R. F., Velásquez-Salazar, A. A., López-Tabares, J.,
Salazar-Henao, N. A., Gómez-Montoya, D. F., Saccone, F. D. (2021). Magnetic Critical Behavior, Hall and Magneto-Impedance Effects in Fe–Co-Based Metallic Glasses IEEE Transactions on Magnetics, 57(2), 4400206. https://doi.org/10.1109/TMAG.2020.3013294
Rosales-Rivera, A., Moscoso-Londoño, O., Muraca, D. (2012). Magnetization dynamics and magnetic hardening in amorphous FeBSi alloys. Revista Mexicana de Física, 58(2), 155-159.
Rosales-Rivera, A., Valencia, V. H., Pineda-Gómez, P. (2007). Three-peak behavior in giant magnetoimpedance effect in Fe73.5−xCrxNb3Cu1Si13.5B9 amorphous ribbons. Physica B, 398, 252-255. https://doi.org/10.1016/j.physb.2007.04.026
Rosales-Rivera, A., Valencia, V. H., Quintero, D. L., Pineda-Gómez, P., Gómez, M. M. (2006). Thermal, magnetic, and structural properties of soft magnetic FeCrNbCuSiB alloy ribbons. Physica B, 384, 169-171. https://doi.org/10.1016/j.physb.2006.05.217
Rushbrooke, G.S. (1963). On the Thermodynamics of the Critical Region for the Ising Problem. The Journal of Chemical Physics, 39(3),842. https://doi.org/10.1063/1.1734338
Saccone, F.D. (2021). Estudio de espectroscopia Mössbauer en aleaciones Heusler Mn50Ni41- xFexSn9 con x = 0, 5, y 10. Escrito-correo electrónico, Universidad de Buenos Aires, Buenos Aires C1063ACV, Argentina, Física, Facultad de Ingeniería. Obtenido de fsaccone@fi.uba.ar
Tishin, A.M., Spichkin, Y.I. (2003). The Magnetocaloric Effect and its Applications. Bristol, Great Bretain: Institute of Physics.
Wang, D., Peng, K., Gu, B., Han, Z., Tang, S., Qin, W., Du, Y. (2003). Influence of annealing on the magnetic entropy changes in FeMoZrNbBCu amorphous ribbons. Journal of Alloys and Compounds, 358, 312-315. https://doi.org/10.1016/S0925-8388(03)00075-6
Widom, B. (1965). Equation of State in the Neighborhood of the Critical Point. The Journal of Chemical Physics, 43(11), 3898. https://doi.org/10.1063/1.1696618
Wilson, K. G. & Kogut, J. (1974). The renormalization group and the ε-expansion. Physics Report, 12C(2), 75-200.
Wood, M. E. & Potter, W. H. (1985). General analysis of magnetic refrigeration and its optimization using a new concept: maximization of refrigerant capacity. Cryogenics, 25(12), 667-683.
https://doi.org/10.1016/0011-2275(85)90187-0
Yang, Z., Chlenova, A.A., Golubeva, E.V., Volchkov, S.O., Guo, P., Shcherbinin, S.V., Kurlyandskaya, G.V. (2019). Magnetoimpedance Effect in the Ribbon-Based Patterned Soft Ferromagnetic Meander Shaped Elements for Sensor Application. Sensors, 19(11), 2468 10.3390/s19112468. https://doi.org/10.3390/s19112468
Yang, Z., Lei, J., Lei, C., Zhou, Y., Wang, T. (2014). Effect of magnetic field annealing and size on the giant magnetoimpedance in micro-patterned Co-based ribbon with a meander structure. Applied Physics A, 116, 1847-1851. https://doi.org/10.1007/s00339-014-8343-1
Yeomans, J.M. (1992). Statistical Mechanics of Phase Transitions. New York, USA: Oxford University Press Inc.
Zou, J., Chen, Y., Li, X., Song, Y., Zhao, Z. (2019). Observation of the transition state of domain wall displacement and GMI effect of FINEMET/graphene composite ribbons. RSC Advances, 9 (67), 39133-39142. https://doi.org/10.1039/c9ra07642e
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2022 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales