Convergencia estadística en medida para sucesiones triples de funciones con valores difusos
online first
PDF

Cómo citar

Granados, C. . (2021). Convergencia estadística en medida para sucesiones triples de funciones con valores difusos. RACCEFYN. https://doi.org/10.18257/raccefyn.1456

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas

Resumen

En este artículo, definimos y extendemos las nociones de dos tipos de convergencia en medida, estos son interna y externa estadística convergencia para sucesiones triples de funciones medibles con valores difusos. Además, mostramos que ambas sucesiones son equivalentes en un espacio de medida finita. Adicionalmente, definimos y estudiamos la noción de estadística convergencia en medida para sucesiones triples de funciones medibles con valores difusos. En adición, mostramos y probamos la versión estadística del teorema de Egorov para sucesiones triples de funciones con valores difusos sobre un espacio de medida finita.

https://doi.org/10.18257/raccefyn.1456

Palabras clave

Sucesiones triples | espacio de medida | teorema de Egorov | funciones con valores difusos | interna y externa estadística
PDF

Referencias

Balcerzak, M., Dems, K., & Komisarski, A. (2007). Statistical convergence and ideal convergence for sequences of functions. J. Math. Anal. Appl., 328(), 715–729. Canak, I., Totur, U., &

Onder, Z. (2017). A tauberian theorem for (c, 1, 1) summable double sequences of fuzzy numbers. Iran. J. Fuzzy Syst., 14(1), 61–75.

Das, B., Tripathy, B. C., Debnath, P., & Bhattacharya, B. (2021). Statistical convergence of complex uncertain triple sequence. Communications in Statistics - Theory and Methods,(), .

Esi, A., & Necdet, M. (2014). Almost convergence of triple sequences. Global Journal of Mathematical Analysis, 2(1), 6–10.

Fast, H. (1951). Statistical convergence and ideal convergence for sequences of functions. Coll. Math., 2(), 241–244.

Fridy, J. (1985). On statistical convergence. Analysis, 5(4), 301–313.

Fridy, J., & Orhan, C. (1993). Lacunary statistical convergence. Pacific Journal of Mathematics, 160(1), 43–51.

Gong, Z., Zhang, L., & Zhu, X. (2015). The statistical convergence for sequences of fuzzy-number-valued functions. Inf. Sci., 295(), 182–95.

Granados, C. (2021). New notions of triple sequences on ideal spaces in metric spaces.

Advances in the Theory of Nonlinear Analysis and its Application, 5(3), 363–368.

Granados, C., & Dhital, A. (2021). Statistical convergence of double sequences in neutrosophic normed spaces. Neutrosophic Sets and Systems, 42(), 334–344.10

Hazarika, B., Alotaibi, A., & Mohiuddine, S. (2020). Statistical convergence in measure for double sequences of fuzzy valued functions. Soft Computing, 24(), 6613–6622.

Ilkhan, M., & Kara, E. (2018). A new type of statistical cauchy sequence and its relation to bourbaki completeness. Cogent. Math. Stat., 5(1), 1–9.

Kim, Y., & Ghil, B. (1997). Integrals of fuzzy-number-valued functions. Fuzzy Sets Syst., 86(), 213–222.

Kostyrko, P., Salat, T., & Wilczynski, W. (2000/2001). i-convergence. Real Anal. Exchange, 26(), 669–689.

Kumar, P., Kumar, V., & Bhatia, S. (2012). Multiple sequences of fuzzy numbers and their statistical convergence. Mathematical Sciences, 6(2), 1–7.

Mohiuddine, S., Alotaibi, A., & Mursaleen, M. (2012). Statistical convergence of double sequences in locally solid riesz spaces. Abstr. Appl. Anal., 2012(9), 719-729.

Mohiuddine, S., Asiri, A., & Hazarika, B. (2019). Weighted statistical convergence through difference operator of sequences of fuzzy numbers with application to fuzzy approximation theorems. Int. J. Gen. Syst., 48(5), 492–506.

Mursaleen, M., & Mohiuddine, S. (2009). Statistical convergence of double sequences in intuitionistic fuzzy normed spaces. Chaos Solitons Fractals, 41(5), 2414-2421.

Negoita, C., & Ralescu, D. (1975). Applications of fuzzy sets to systems analysis. Wiley, New York.

Nuray, F., & Savas, E. (1995). Statistical convergence of sequences of fuzzy numbers. Math. Slovaca, 45(3), 269-273.

Pringsheim, A. (1900). Zur theorie der zweifach unendlichen zahlenfolgen. , 53(), 289321.

Sahiner, A., Gurdal, A., & Duden, K. (2007). Triple sequences and their statistical convergence. Selcuk J. Appl. Math., 8(2), 49-55.

Sahiner, A., & Tripathy, B. C. (2008). Some i-related properties of triple sequences. Selcuk J. Appl. Math., 9(2), 9-18.

Sal´ at, T. (1980). On statistically convergent sequences of real numbers. Math. Slovaca, 30(), 139–150.

Savas, E. (1996). A note on double sequences of fuzzy numbers. Turkish J. Math., 20(2), 175-178.

Savas, E., & Mursaleen, M. (2004). On statistically convergent double sequences of fuzzy numbers. Inf. Sci., 162(3-4), 183-192.

Schoenberg, I. (1959). The integrability of certain functions and related summability methods. Am. Math. Monthly., 66(), 361–375.

Talo, , & Bayazit, F. (2017). Tauberian theorems for statistically convergent double sequences of fuzzy numbers. J. Intell. Fuzzy Syst., 32(3), 2617-2624.

Zadeh, L. (1965). Fuzzy sets. Inf. Control, 8(), 338–353.

Zhang, B. (2001). On measurability of fuzzy-number-valued functions. Fuzzy Sets Syst., 120(), 505–509.

Zygmund, A. (1935). Trigonometrical series, vol. 5 of monograf´ yas de matem´áticas. Warszawa-Lwow.

Onder, Z., C¸ anak, I., & Totur, U. (2017). Tauberian theorems for statistically (c, 1, 1) summable double sequences of fuzzy numbers. Open Math., 15(1), 157-178.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2021 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales