Comparación numérica de métodos tipo Newton generalizado y el algoritmo extragradiente para el problema de complementariedad no lineal
PDF

Cómo citar

Arenas-Aparicio, F. ., & Zambrano V, D. (2023). Comparación numérica de métodos tipo Newton generalizado y el algoritmo extragradiente para el problema de complementariedad no lineal. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 47(182), 160–171. https://doi.org/10.18257/raccefyn.1761

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

En este artículo realizamos una comparación numérica de dos métodos tipo Newton generalizado, que utilizan las funciones de complementariedad mínimo y Fisher - Burmeister, respectivamente y un método que utiliza proyecciones llamado algoritmo extragradiente. Dado que el problema de complementariedad no lineal es de gran interés para muchos investigadores por sus numerosas aplicaciones en Ingeniería y Física, presentamos un estudio numérico comparativo que permita elegir uno de los métodos según la necesidad.

https://doi.org/10.18257/raccefyn.1761

Palabras clave

complementariedad | método de Newton | proyecciones ortogonales
PDF

Citas

Abaffy, J., Broyden, C., y Spedicato, E. (1984). A class of direct methods for linear systems. Numerische Mathematik, 45(3), 361-376. doi: https://doi.org/10.1007/BF01391414

Anitescu, M., Cremer, J., y Potra, F. (1997). On the existence of solutions to complementarity formulations of contact problems with friction. SIAM Publications, (Complementarity and Variational Problems), 12 - 21.

Arenas, F., Pérez, R., y Vivas, H. (2016). Un modelo de redes neuronales para complementariedad no lineal. Revista integraci´ón, 2(1), 180-181. doi: https://doi.org/10.18273/revint.v34n2-2016005

Broyden, C., Dennis, J., y Mor´ e, J. (1972). On the local and superlinear convergence of quasi-Newton methods. Department of Computer Science, Cornell University. doi: https://doi.org/10.1093/imamat/12.3.223

Abaffy, J., Broyden, C., Spedicato, E. (1984). A class of direct methods for linear systems. Numerische Mathematik, 45(3), 361-376. doi: https://doi.org/10.1007/BF01391414

Anitescu, M., Cremer, J., Potra, F. (1997). On the existence of solutions to complementarity formulations of contact problems with friction. SIAM Publications, (Complementarity and Variational Problems), 12-21.

Arenas, F., Pérez, R., Vivas, H. (2016). Un modelo de redes neuronales para complementariedad no lineal. Revista integración, 2(1), 180-181. doi: https://doi.org/10.18273/revint.v34n2-2016005

Broyden, C., Dennis, J., Moré, J. (1972). On the local and superlinear convergence of quasi-Newton methods. Department of Computer Science, Cornell University. doi: https://doi.org/10.1093/imamat/12.3.223

Chen, A., Oh, J., Park, D., Recker, W. (2010). Solving the bicriteria traffic equilibrium problem with variable demand and nonlinear path costs. Applied Mathematics and Computation, 217(7), 3020-3031. doi: https://doi.org/10.1016/j.amc.2010.08.035

Clarke, F. (1975). Generalized gradients and applications. Transactions of the American Mathematical Society, 205, 247-262.

Facchinei, F., Pang, J.-S. (2003a). Finite-dimensional variational inequalities and complementarity problems. En Springer Series in Operations Research and Financial Engineering (Vol. 1). Springer-Verlag, New York. doi: https://doi.org/10.1007/b9754312

Facchinei, F., Pang, J.-S. (2003b). Finite-dimensional variational inequalities and complementarity problems. En Springer Series in Operations Research and Financial Engineering (Vol. 2). Springer-Verlag, New York. doi: https://doi.org/10.1007/b97543

Ferris, M., Pang, J. (1997). Engineering and economic applications of complementarity problems. SIAM Review, 39(4), 669-713. doi: https://doi.org/10.1137/S0036144595285963

Fischer, A., Kanzow, C. (1996). On finite termination of an iterative method for linear complementarity problems. Mathematical Programming, 74(3), 279-292. doi: https://doi.org/10.1007/BF02592200

Goldstein, A. (1964). Convex programming in hilbert space. Bulletin of the American Mathematical Society, 70(5), 709-710. doi: https://doi.org/10.1090/S0002-9904-1964-11178-2

Korpelevich, G. (1976). The extragradient method for finding saddle points and other problems. Ekonomika i matematicheskie metody, 12(4), 747-756.

Kostreva, M. (1984). Elasto-hidrodinamic lubrication: A non-linear complementarity problem. International Journal for Numerical Methods in Fluids, 4(4), 377-397. doi: https://doi.org/10.1002/fld.1650040407

Levitin, E., Polyak, B. (1966). Constrained minimization methods. USSR Computational Mathematics and Mathematical Physics, 6(5), 1-50. doi: https://doi.org/10.1016/0041-5553(66)90114-5

Lopes, V., Martínez, J., Pérez, R. (1999). On the local convergence of quasi-Newton methods for nonlinear complementary problems. Applied Numerical Mathematics, 30(1), 3-22. doi: https://doi.org/10.1016/S0168-9274(98)00080-4

Pang, J.-S., Qi, L. (1993). Nonsmooth equations: Motivation and algorithms. SIAM Journal on Optimization, 3(3), 443-465.

Wang, F., Deng, H., Gao, Y., Lei, J. (Eds.). (2010). Artificial intelligence and computational intelligence - international conference, AICI 2010, sanya, china, october 23-24, 2010, proceedings, part II (Vol. 6320). Springer. doi: https://doi.org/10.1007/978-3-642-16527-6

Xiu, N., Zhang, J. (2003). Some recent advances in projection-type methods for variational inequalities. Journal of Computational and Applied Mathematics, 152(1), 559-585. (Proceedings of the International Conference on Recent Advances in Computational Mathematics) doi:https://doi.org/10.1016/S0377- 0427(02)00730-6

Yong, L. (2010). Nonlinear complementarity problem and solution methods. En Proceedings of the 2010 international conference on artificial intelligence and computational intelligence: Part i (p. 461-469). Springer-Verlag. doi: https://doi.org/10.1007/978-3-642-16530-655

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales