Cohomologa de Cĕch y Cuantización Topológica de Parámetros Físicos
PDF

Cómo citar

González , G. A. (2023). Cohomologa de Cĕch y Cuantización Topológica de Parámetros Físicos. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 47(182), 51–71. https://doi.org/10.18257/raccefyn.1782

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

En este trabajo se revisa el procedimiento de cuantización topológica basado en la cohomología de Cĕch. Se muestra cómo el método de cuantización se fundamenta en la libertad de escogencia del Lagrangiano apropiado para una teoría de campos, a partir de una familia de Lagrangianos que difieren entre sí por un término igual a una derivada total, de tal manera que la teoría de cohomología de Cĕch proporciona el lenguaje matemático correcto con el cual catalogar la información necesaria para obtener condiciones de cuantización de parámetros físicos. Posteriormente, se aplica este método a la cuantización topológica del monopolo magnético y de la constante GN de la gravitación universal de Newton.

https://doi.org/10.18257/raccefyn.1782

Palabras clave

Topología Algebraica | Teorías de Campos | Teoría Cuántica
PDF

Citas

Aguilar, P. (2018). All roads lead to the dirac quantization condition. Revista de la Escuela de Física, VI(1), 100-125. Descargado de https://fisica.unah.edu.hn/publicaciones/revista-ref/volumenes-anteriores/volumen-vi-no-i/ref-unah-6-1-1/

Alvarez, O. (1985a). Cohomology and field theory. En Symposium on anomalies, geometry, topology (Chicago, Ill., 1985) (pp. 3-21). World Sci. Publishing, Singapore.

Alvarez, O. (1985b). Topological quantization and cohomology. Communications in Mathematical Physics, 100(2), 279-309.

Bagger, J., Witten, E. (1982). The gauge invariant supersymmetric nonlinear sigma model. Physics Letters B, 118(1-3), 103-106. doi: 10.1016/0370-2693(82)90609-8

Barut, A.O. (1980). Electrodynamics and classical theory of fields & particles. Dover Publications, Inc., New York. (Corrected reprint of the 1964 original)

Bott, R., y Tu, L. W. (1982). Differential forms in algebraic topology. En Graduate texts in mathematics (Vol. 82, pp. xiv+331). Springer-Verlag, New York-Berlin.

Carroll, S. (2004). Spacetime and geometry. Addison Wesley, San Francisco, CA.

Chern, S. (1995). Complex manifolds without potential theory (second ed.). Springer-Verlag, New York.19

Choquet-Bruhat, Y., DeWitt-Morette, C., Dillard-Bleick, M. (1982). Analysis, manifolds and physics (Second ed.). North-Holland Publishing Co., Amsterdam-New York.

Collinucci, A., Savelli, R. (2012a). On flux quantization in F-theory. Journal of High Energy Physics, 15. https://doi.org/10.1007/JHEP02(2012)015

Collinucci, A., Savelli, R. (2012b). On flux quantization in F-theory II: unitary and symplectic gauge groups. Journal of High Energy Physics, 94 (2012). https://doi.org/10.1007/JHEP08(2012)094

Curtis, W.D., Miller, F.R. (1985). Differential manifolds and theoretical physics. En Pure and applied mathematics, (Vol. 116, pp. xix+394). Academic Press, Inc., Orlando, FL.

Daniel, M., Viallet, C.-M. (1980). The geometrical setting of gauge theories of the Yang- Mills type. Review Modern Physics, 52(1), 175-197. doi: 10.1103/RevModPhys.52.175

Davighi, J., Gripaios, B. (2018). Homological classification of topological terms in sigma models on homogeneous spaces. Journal of High Energy Physics, 155. doi: 10.1007/JHEP09(2018)155

Deguchi, S., Kitsukawa, K. (2006). Charge quantization conditions based on the Atiyah-Singer index theorem. Progress of Theoretical Physics, 115(6), 1137-1149. doi: 10.1143/PTP.115.1137

Deser, S., Jackiw, R., Templeton, S. (1982a). Three-dimensional massive gauge theories. Physical Review Letters, 48(15), 975-978. doi: 10.1103/PhysRevLett.48.975

Deser, S., Jackiw, R., Templeton, S. (1982b). Topologically massive gauge theories. Annals of Physics, 140(2), 372-411. doi: 10.1016/0003-4916(82)90164-6

Dirac, P.A.M. (1931). Quantised singularities in the electromagnetic field. Proceedings of the Royal Society London, Ser. A, 133(821), 60-72. doi: 10.1098/rspa.1931.0130

Eguchi, T., Gilkey, P.B., Hanson, A.J. (1980). Gravitation, gauge theories and differential geometry. Physics Reports, 66(6), 213-393. doi: 10.1016/0370-1573(80)90130-1

Fiorenza, D., Sati, H., Schreiber, U. (2021). Twisted cohomotopy implies twisted string structure on M5-branes. Journal of Mathematical Physics, 62(4), Paper No. 042301, 16. doi: 10.1063/5.0037786

Flores-Alfonso, D., Quevedo, H. (2017). Topological Quantum Numbers of DyonicFields Over Taub-NUT and Taub-Bolt Spaces. Journal of Geometry and Symmetry in Physics, 44, 39-54. doi: 10.7546/jgsp-44-2017-39-54

Flores-Alfonso, D., Quevedo, H. (2019). Flux Quantization in Dilatonic Taub–Nut Dyons. Reports on Mathematical Physics, 84, 171-185. doi: 10.1016/S0034-4877(19)30081-3

Freed, D.S. (2000). Dirac charge quantization and generalized differential cohomology. En Surveys in Differential Geometry, 7, 129-194. Int. Press, Somerville, MA. doi: 10.4310/SDG.2002.v7.n1.a6

Gaiotto, D., Johnson-Freyd, T., Witten, E. (2021). A note on some minimally supersymmetric models in two dimensions. En Integrability, quantization, and geometry II. Quantum theories and algebraic geometry, 103, 203-221. Amer. Math. Soc., Providence, RI.

González, G.A. (2000). Topological quantization and Cĕch cohomology. Revista de integración. Temas de Matemáticas, 18(2), 51-64 (2005).

Grady, D., Sati, H. (2021). Differential cohomotopy versus differential cohomology for m-theory and differential lifts of postnikov towers. Journal of Geometry and Physics,165(104203). doi: https://doi.org/10.1016/j.geomphys.2021.104203

Jackiw, R.W. (1985). Three-cocycle in mathematics and physics. Physical Review Letters, 54(3),159-162. doi: 10.1103/PhysRevLett.54.159

Jackiw, R.W. (2004). Dirac’s magnetic monopoles (again). International Journal of Modern Physics.A, 19(suppl.), 137-143. doi: 10.1142/S0217751X04018658

Kouneiher, J. (2018). Topological foundations of physics. En S. Wuppuluri y F. A. Doria (Eds.), The map and the territory: Exploring the foundations of science, thought and 20 reality (pp. 245- 271). Cham: Springer International Publishing. doi: 10.1007/978-3 -319-72478-2 13

Landau, L. D., Lifshitz, E. M. (1976). Course of theoretical physics. Vol. 1 (Third ed.). Pergamon Press, Oxford-New York-Toronto, Ont. (Mechanics, Translated from the Russian by J. B. Skyes and J. S. Bell)

Li, Q., Li, S. (2016). On the B-twisted topological sigma model and Calabi–Yau geometry. Journal of Differential Geometry, 102(3), 409-484. doi: 10.4310/jdg/1456754015

Matsuyama, T. (2008). Anomaly, topological quantization and cohomology. Topologica, 1(1), 002. doi: 10.3731/topologica.1.002

Monnier, S., Moore, G.W., Park, D.S. (2018). Quantization of anomaly coefficients in 6D N = (1;0) supergravity. Journal of High Energy Physics, (2), 020, front matter+40. doi:10.1007/jhep02(2018)020

Nappi, C.R., Witten, E. (1993). Wess-Zumino-Witten model based on a nonsemisimplegroup.

Physics Review Letter, 71(23), 3751-3753. doi: 10.1103/PhysRevLett.71.3751

Nettel, F., Quevedo, H., Rodriguez, M. (2009). Topological spectrum of mechanical systems. Reports on Mathematical Physics, 64(3), 355-365. doi: 10.1016/S0034-4877(10)00003-0

Patrascu, A.T. (2014). Quantization, holography, and the universal coefficient theorem. Physics Review D, 90, 045018. doi: 10.1103/PhysRevD.90.045018

Rahimizadeh, H., Sholar, S., Berg, M. (2012). A new topological perspective on quantization in physics. Communications in Mathematics and Applications, 3(2), 129-146. doi: 10.26713/cma.v3i2.151

Roman, P. (1969). Introduction to quantum field theory. John Wiley & Sons, Inc., New York-London-Sydney.

Singer, I.M., Thorpe, J.A. (1976). Lecture notes on elementary topology and geometry. Springer-Verlag, New York-Heidelberg. (Reprint of the 1967 edition) doi: 10.1007/bf01931377

Spanier, E.H. (1966). Algebraic topology. McGraw-Hill Book Co., New York-Toronto, Ont.-London.

Thomas, T. Y. (1965). Concepts from tensor analysis and differential geometry (Seconded.). Academic Press, New York-London.

Weinberg, S. (1972). Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. New York: John Wiley and Sons.

Wells, R. O., Jr. (2008). Differential analysis on complex manifolds. En Graduate texts in mathematics (Third ed., Vol. 65, pp. xiv+299). Springer, New York. doi: 10.1007/978-0-387-73892-5

Wess, J., Bagger, J. (1992). Supersymmetry and supergravity (Second ed.). Princeton University Press, Princeton, NJ.

Wess, J., Zumino, B. (1971). Consequences of anomalous Ward identities. Physics Letters, 37B, 95-97. doi: 10.1016/0370-2693(71)90582-x

West, P. (1990). Introduction to supersymmetry and supergravity (Second ed.). World Scientific Publishing Co., Inc., Teaneck, NJ. doi: 10.1142/1002

Witten, E. (1983). Global aspects of current algebra. Nuclear Physics. B, 223(2), 422-432. doi: 10.1016/0550-3213(83)90063-9

Witten, E., Bagger, J. (1982). Quantization of Newton’s constant in certain supergravity theories. Physics Letters B, 115(3), 202-206. doi: 10.1016/0370-2693(82)90644-X

Wu, T. T., Yang, C. N. (1976). Dirac monopole without strings: monopole harmonics. Nuclear Physics B, 107(3), 365-380. doi: 10.1016/0550-3213(76)90143-7

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales