Átomos bosónicos ultrafríos en redes ópticas: una descripción general
online first

Cómo citar

Rey, A. M. (2021). Átomos bosónicos ultrafríos en redes ópticas: una descripción general. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. https://doi.org/10.18257/raccefyn.1399


La descarga de datos todavía no está disponible.
Citas en Scopus
Perfil en Google Scholar
Citado por:

Métricas Alternativas


Este artículo hace una ruta a través de la física de átomos ultrafríos atrapados en redes ópticas comenzando desde el sistema no interactuante y terminando en la física de muchos cuerpos que describe el régimen fuertemente correlacionado.

Palabras clave

Átomos ultrafríos
Redes ópticas
Estadística cuántica bosónica
Aislante de Mott
Magnetismo cuántico


Al Khawaja, U., Andersen, J. O., Proukakis, N. P., & Stoof, H. T. C. (2002, Jul). Low dimensional bose gases. Phys. Rev. A, 66(1), 013615. doi: 10.1103/Phys-RevA.66.013615

Anderlini, M., Lee, P. J., Brown, B. L., Sebby-Strabley, J., Phillips, W. D., & Porto, J. V. (2007, July). Controlled exchange interaction between pairs of neutral atoms in an optical lattice. Nature, 448(7152), 452–456. doi: 10.1038/nature06011

Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E., & Cornell, E. A. (1995). Observation of bose-einstein condensation in a dilute atomic vapor. Science, 269(5221), 198–201. doi: 10.1126/science.269.5221.198

Anderson, P. W. (1950, Jul). Antiferromagnetism. theory of superexchange interaction. Phys. Rev., 79(2), 350–356. doi: 10.1103/PhysRev.79.350

Anderson, P. W. (1966, Apr). Considerations on the flow of superfluid helium. Rev. Mod. Phys., 38(2), 298–310. doi: 10.1103/RevModPhys.38.298

Ashcroft, N. W., & Mermin, N. D. (1976). Solid state physics. New York, United States: W.B. Saunders Company.

Auerbach, A. (1994). Interacting electrons and quantum magnetism. New York, United States: Springer-Verlag.

Bakr, W. S., Peng, A., Tai, M. E., Ma, R., Simon, J., Gillen, J. I., . . . Greiner, M. (2010). Probing the superfluid–to–mott insulator transition at the single-atom level. Science, 329(5991), 547–550. doi: 10.1126/science.1192368

Batrouni, G. G., Rousseau, V., Scalettar, R. T., Rigol, M., Muramatsu, A., Denteneer, P. J. H., & Troyer, M. (2002, Aug). Mott domains of bosons confined on optical lattices. Phys. Rev. Lett., 89(11), 117203. doi: 10.1103/PhysRevLett.89.117203

Batrouni, G. G., Scalettar, R. T., & Zimanyi, G. T. (1990, Oct). Quantum critical phenomena in one-dimensional bose systems. Phys. Rev. Lett., 65(14), 1765–1768. doi: 10.1103/PhysRevLett.65.1765

Batrouni, G. G., Scalettar, R. T., Zimanyi, G. T., & Kampf, A. P. (1995, Mar). Supersolids in the bose-hubbard hamiltonian. Phys. Rev. Lett., 74(13), 2527–2530. doi: 10.1103/PhysRevLett.74.2527

Blakie, P. B., & Clark, C. W. (n.d., mar). Wannier states and bose–hubbard parameters for 2d optical lattices. Journal of Physics B: Atomic, Molecular and Optical Physics, 37(7), 1391–1404. doi: 10.1088/0953-4075/37/7/002

Bogoliubov, N. N. (1947, 0). On the theory of superfluidity. J. Phys. USSR, 11(1), 23–32. doi: 0

Bose, S. N. (1924, Dec). Plancks gesetz und lichtquantenhypothese. Z. Physik, 26(1), 178–181. doi: 10.1007/BF01327326

Bradley, C. C., Sackett, C. A., & Hulet, R. G. (1997, Feb). Bose-einstein condensation of lithium: Observation of limited condensate number. Phys. Rev. Lett., 78(6), 985–989. doi: 10.1103/PhysRevLett.78.985

Campbell, G. K., Mun, J., Boyd, M., Medley, P., Leanhardt, A. E., Marcassa, L. G., . . . Ketterle, W. (2006). Imaging the mott insulator shells by using atomic clock shifts. Science, 313(5787), 649–652. doi: 10.1126/science.1130365

Campbell, S. L., Hutson, R. B., Marti, G. E., Goban, A., Darkwah Oppong, N., Mc-Nally, R. L., . . . Ye, J. (2017). A fermi-degenerate three-dimensional optical lattice clock. Science, 358(6359), 90–94. doi: 10.1126/science.aam5538

Castin, Y., & Dum, R. (1998, Apr). Low-temperature bose-einstein condensates in timedependent traps: Beyond the u(1) symmetry-breaking approach. Phys. Rev. A, 57(4), 3008–3021. doi: 10.1103/PhysRevA.57.3008

Dalfovo, F., Giorgini, L. P., S.and Pitaevskii, & Stringari, S. (1999, Apr). Theory of bose-einstein condensation in trapped gases. Rev. Mod. Phys., 71(3), 463–512. doi: 10.1103/RevModPhys.71.463

Davis, K. B., Mewes, M. O., Andrews, M. R., van Druten, N. J., Durfee, D. S., Kurn, D. M., & Ketterle, W. (1995, Nov). Bose-einstein condensation in a gas of sodium atoms. Phys. Rev. Lett., 75(22), 3969–3973. doi: 10.1103/PhysRevLett.75.3969

Dirac, P. A. M., & Fowler, R. H. (1926). On the theory of quantum mechanics. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 112(762), 661–677. doi: 10.1098/rspa.1926.0133

Dirac, P. A. M., & Fowler, R. H. (1929). Quantum mechanics of many-electron systems. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 123(792), 714–733. doi: 10.1098/rspa.1929.0094

Duan, L.-M., Demler, E., & Lukin, M. D. (2003, Aug). Controlling spin exchange interactions of ultracold atoms in optical lattices. Phys. Rev. Lett., 91(9), 090402. doi: 10.1103/PhysRevLett.91.090402

Einstein, A. (1925a). Quantentheorie des einatomigen idealen gases. zweite abhandlung. Berlin, Germany: Preussischen Akademie der Wissenschaften.

Fisher, M. E., Barber, M. N., & Jasnow, D. (1973, Aug). Helicity modulus, superfluidity, and scaling in isotropic systems. Phys. Rev. A, 8(2), 1111–1124. doi: 10.1103/Phys-RevA.8.1111

Fisher, M. P. A., Weichman, P. B., Grinstein, G., & Fisher, D. S. (1989, Jul). Boson localization and the superfluid-insulator transition. Phys. Rev. B, 40(1), 546–570. doi: 10.1103/PhysRevB.40.546

Fölling, S., Widera, A., Müller, T., Gerbier, F., & Bloch, I.(2006, Aug). Formation of spatial shell structure in the superfluid to mott insulator transition. Phys. Rev. Lett., 97(6), 060403. doi: 10.1103/PhysRevLett.97.060403

Foot, C. J. (1991). Laser cooling and trapping of atoms. Contemporary Physics, 32(6), 369–381. doi: 10.1080/00107519108223712

Freericks, J. K., & Monien, H. (1996, Feb). Strong-coupling expansions for the pure and disordered bose-hubbard model. Phys. Rev. B, 53(5), 2691–2700. doi: 10.1103/Phys-RevB.53.2691

Gardiner, C. W. (1997, Aug). Particle-number-conserving bogoliubov method which demonstrates the validity of the time-dependent gross-pitaevskii equation for a highly condensed bose gas. Phys. Rev. A, 56(2), 1414–1423. doi: 10.1103/Phys-RevA.56.1414

Gemelke, N., Zhang, X., Hung, C.-L., & Chin, C. (2009, Aug). In situ observation of incompressible mott-insulating domains in ultracold atomic gases. Nature, 460(7258), 995–998. doi: 10.1038/nature08244

Ginzburg, V. L., & Landau, L. D. (1950). On the Theory of superconductivity. Zh. Eksp. Teor. Fiz., 20(), 1064–1082.

Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W., & Bloch, I. (2002, January). Quantum phase transition from a superfluid to a mott insulator in a gas of ultracold atoms. Nature, 415(6867), 39–44. doi: 10.1038/415039a

Gross, C., & Bloch, I. (2017). Quantum simulations with ultracold atoms in optical lattices. Science, 357(6355), 995–1001. doi: 10.1126/science.aal3837

Gross, E. P. (1961, May). Structure of a quantized vortex in boson systems. Il Nuovo Cimento (1955-1965), 20(3), 454–457. doi: 10.1007/BF02731494

Heisenberg, W. (1926, June). Mehrkörperproblem und resonanz in der quantenmechanik. Zeitschrift für Physik, 38(6), 411–426. doi: 10.1007/BF01397160

Heisenberg, W. (1928, September). Zur theorie des ferromagnetismus. Zeitschrift f¨ür Physik, 49(9), 619–636. doi: 10.1007/BF01328601

Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W., & Zoller, P. (1998, Oct). Cold bosonic atoms in optical lattices. Phys. Rev. Lett., 81(15), 3108–3111. doi: 10.1103/PhysRevLett.81.3108

Jiménez-García, K., Compton, R. L., Lin, Y.-J., Phillips, W. D., Porto, J. V., & Spielman, I. B. (2010, Sep). Phases of a two-dimensional bose gas in an optical lattice. Phys. Rev. Lett., 105(11), 110401. doi: 10.1103/PhysRevLett.105.110401

Kaufman, A. M., Lester, B. J., Foss-Feig, M., Wall, M. L., Rey, A. M., & Regal, C. A. (2015, November). Entangling two transportable neutral atoms via local spin exchange. Nature, 527(7577), 208–211. doi: 10.1038/nature16073

Kramers, H. A. (1934). L’interaction entre les atomes magnétogènes dans un cristal paramagnétique. Physica, 1(1), 182–192. doi: 10.1016/S0031-8914(34)90023-9

Krauth, W., Caffarel, M., & Bouchaud, J.-P. (1992, Feb). Gutzwiller wave function for a model of strongly interacting bosons. Phys. Rev. B, 45(6), 3137–3140. doi: 10.1103/PhysRevB.45.3137

Kuklov, A. B., & Svistunov, B. V. (2003, Mar). Counterflow superfluidity of two-species ultracold atoms in a commensurate optical lattice. Phys. Rev. Lett., 90(10), 100401. doi: 10.1103/PhysRevLett.90.100401

Lee, P. A., Nagaosa, N., & Wen, X.-G. (2006, Jan). Doping a mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys., 78(1), 17–85. doi: 10.1103/RevModPhys.78.17

Leggett, A. J. (1999, Mar). Superfluidity. Rev. Mod. Phys., 71(2), S318–S323. doi: 10.1103/RevModPhys.71.S318

Leggett, A. J. (2001, Apr). Bose-einstein condensation in the alkali gases: Some fundamental concepts. Rev. Mod. Phys., 73(2), 307–356. doi: 10.1103/RevModPhys.73.307

Leggett, A. J., & Sols, F. (1991, Mar). On the concept of spontaneously broken gauge symmetry in condensed matter physics. Found. Phys., 21(3), 353–364. doi: 10.1007/BF01883640

Lifshitz, E. M., & Pitaevskii, L. (1980). Statistical physics part 2. Oxford, United Kingdom: Peramon Press.

London, F. (1938a, April). The .-phenomenon of liquid helium and the bose-einstein degeneracy. Nature, 141(3571), 643–644. doi: 10.1038/141643a0

London, F. (1938b, Dec). On the bose-einstein condensation. Phys. Rev., 54(11), 947–954. doi: 10.1103/PhysRev.54.947

Morgan, S. A. (2000a). A gapless theory of bose-einstein condensation in dilute gases at finite temperature (Unpublished doctoral dissertation). University of Oxford, Oxford, UK.

Morgan, S. A. (2000b, sep). A gapless theory of bose-einstein condensation in dilute gases at finite temperature. Journal of Physics B: Atomic, Molecular and Optical Physics, 33(19), 3847–3893. doi: 10.1088/0953-4075/33/19/303

Niyaz, P., Scalettar, R. T., Fong, C. Y., & Batrouni, G. G. (1991, Oct). Ground-state phase diagram of an interacting bose model with near-neighbor repulsion. Phys. Rev. B, 44(13), 7143–7146. doi: 10.1103/PhysRevB.44.7143

Paredes, B., Widera, A., Murg, V., Mandel, O., F¨ olling, S., Cirac, I., . . . Bloch, I. (2004, May). Tonks–girardeau gas of ultracold atoms in an optical lattice. Nature, 429(6989), 277–281. doi: 0.1038/nature02530

Peil, S., Porto, J. V., Tolra, B. L., Obrecht, J. M., King, B. E., Subbotin, M., . . . Phillips, W. D. (2003, May). Patterned loading of a bose-einstein condensate into an optical lattice. Phys. Rev. A, 67(5), 051603. doi: 10.1103/PhysRevA.67.051603

Penrose, O., & Onsager, L. (1956, Nov). Bose-einstein condensation and liquid helium. Phys. Rev., 104(3), 576–584. doi: 10.1103/PhysRev.104.576

Pitaevskii, L. P. (2003, Aug). Vortex lines in an imperfect bose gas. J. Exptl. Theoret. Phys. (U.S.S.R.), 13(2), 451–454. doi: 0

Rey, A. M., Burnett, K., R., R., Edwards, M., Williams, C. J., & Clark, C. W. (2003, feb). Bogoliubov approach to superfluidity of atoms in an optical lattice. J. Phys. B: At. Mol. Opt. Phys., 36(5), 825–841. doi: 10.1088/0953-4075/36/5/304

Rigol, M., Batrouni, G. G., Rousseau, V. G., & Scalettar, R. T. (2009, May). State diagrams for harmonically trapped bosons in optical lattices. Phys. Rev. A, 79(5), 053605. doi: 10.1103/PhysRevA.79.053605

Roth, R., & Burnett, K. (2003, Mar). Superfluidity and interference pattern of ultracold bosons in optical lattices. Phys. Rev. A, 67(3), 031602. doi: 10.1103/Phys-RevA.67.031602

Scalettar, R. T., Batrouni, G. G., & Zimanyi, G. T. (1991, Jun). Localization in interacting, disordered, bose systems. Phys. Rev. Lett., 66(24), 3144–3147. doi: 10.1103/PhysRevLett.66.3144

Schäfer, F., Fukuhara, T., Sugawa, S., Takasu, Y., & Takahashi, Y. (2020). Nat. Rev. Phys., 2(8), 411–425.

Shastry, B. S., & Sutherland, B. (1990, Jul). Twisted boundary conditions and effective mass in heisenberg-ising and hubbard rings. Phys. Rev. Lett., 65(2), 243–246. doi: 10.1103/PhysRevLett.65.243

Sherson, J. F., Weitenberg, C., Endres, M., Cheneau, M., & Bloch, S., I .and Kuhr. (2010, August). Single-atom-resolved fluorescence imaging of an atomic mott insulator. Nature, 467(7311), 68–72. doi: 10.1038/nature09378

Sheshadri, K., Krishnamurthy, H. R., Pandit, R., & Ramakrishnan, T. V. (1993, may). Superfluid and insulating phases in an interacting-boson model: Mean-field theory and the RPA. Europhysics Letters (EPL), 22(4), 257–263. doi: 10.1209/0295-5075/22/4/004

Silvera, I. F., & Walraven, J. T. M. (1980, Jan). Stabilization of atomic hydrogen at low temperature. Phys. Rev. Lett., 44(3), 164–168. doi: 10.1103/PhysRevLett.44.164

Spielman, I. B., Phillips, W. D., & Porto, J. V. (2007, Feb). Mott-insulator transition in a two-dimensional atomic bose gas. Phys. Rev. Lett., 98(8), 080404. doi: 10.1103/Phys-RevLett.98.080404

Svensson, E. C., & Sears, V. F. (1987). Neutron scattering by4 he and3 he. (D. F. Brewer, Ed.). North Holland, Amsterdam: Elsevier.

Trotzky, S., Cheinet, P., Fölling, S., Feld, M., Schnorrberger, U., Rey, A. M., . . . Bloch, I. (2008). Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices. Science, 319(5861), 295–299. doi: 10.1126/science.1150841

van Oosten, D., van der Straten, P., & Stoof, H. T. C. (2001, Apr). Quantum phases in an optical lattice. Phys. Rev. A, 63(5), 053601. doi: 10.1103/PhysRevA.63.053601

Ziman, J. M. (1964). Principles of the theory of solids. Cambridge, United Kingdom: Cambridge University Press.

Creative Commons License

Esta obra está bajo licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Derechos de autor 2021 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales