Átomos bosónicos ultrafríos en redes ópticas: una descripción general
online first
PDF

Cómo citar

Rey, A. M. (2021). Átomos bosónicos ultrafríos en redes ópticas: una descripción general. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. https://doi.org/10.18257/raccefyn.1399

Descargas

La descarga de datos todavía no está disponible.
Crossref
Citas en Scopus
Perfil en Google Scholar
Citado por:

Métricas Alternativas

Resumen

Este artículo hace una ruta a través de la física de átomos ultrafríos atrapados en redes ópticas comenzando desde el sistema no interactuante y terminando en la física de muchos cuerpos que describe el régimen fuertemente correlacionado.

Palabras clave

Átomos ultrafríos
Redes ópticas
Estadística cuántica bosónica
Superfluidez
Aislante de Mott
Magnetismo cuántico
https://doi.org/10.18257/raccefyn.1399
PDF

Referencias

Al Khawaja, U., Andersen, J. O., Proukakis, N. P., & Stoof, H. T. C. (2002, Jul). Low dimensional bose gases. Phys. Rev. A, 66(1), 013615. doi: 10.1103/Phys-RevA.66.013615

Anderlini, M., Lee, P. J., Brown, B. L., Sebby-Strabley, J., Phillips, W. D., & Porto, J. V. (2007, July). Controlled exchange interaction between pairs of neutral atoms in an optical lattice. Nature, 448(7152), 452–456. doi: 10.1038/nature06011

Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E., & Cornell, E. A. (1995). Observation of bose-einstein condensation in a dilute atomic vapor. Science, 269(5221), 198–201. doi: 10.1126/science.269.5221.198

Anderson, P. W. (1950, Jul). Antiferromagnetism. theory of superexchange interaction. Phys. Rev., 79(2), 350–356. doi: 10.1103/PhysRev.79.350

Anderson, P. W. (1966, Apr). Considerations on the flow of superfluid helium. Rev. Mod. Phys., 38(2), 298–310. doi: 10.1103/RevModPhys.38.298

Ashcroft, N. W., & Mermin, N. D. (1976). Solid state physics. New York, United States: W.B. Saunders Company.

Auerbach, A. (1994). Interacting electrons and quantum magnetism. New York, United States: Springer-Verlag.

Bakr, W. S., Peng, A., Tai, M. E., Ma, R., Simon, J., Gillen, J. I., . . . Greiner, M. (2010). Probing the superfluid–to–mott insulator transition at the single-atom level. Science, 329(5991), 547–550. doi: 10.1126/science.1192368

Batrouni, G. G., Rousseau, V., Scalettar, R. T., Rigol, M., Muramatsu, A., Denteneer, P. J. H., & Troyer, M. (2002, Aug). Mott domains of bosons confined on optical lattices. Phys. Rev. Lett., 89(11), 117203. doi: 10.1103/PhysRevLett.89.117203

Batrouni, G. G., Scalettar, R. T., & Zimanyi, G. T. (1990, Oct). Quantum critical phenomena in one-dimensional bose systems. Phys. Rev. Lett., 65(14), 1765–1768. doi: 10.1103/PhysRevLett.65.1765

Batrouni, G. G., Scalettar, R. T., Zimanyi, G. T., & Kampf, A. P. (1995, Mar). Supersolids in the bose-hubbard hamiltonian. Phys. Rev. Lett., 74(13), 2527–2530. doi: 10.1103/PhysRevLett.74.2527

Blakie, P. B., & Clark, C. W. (n.d., mar). Wannier states and bose–hubbard parameters for 2d optical lattices. Journal of Physics B: Atomic, Molecular and Optical Physics, 37(7), 1391–1404. doi: 10.1088/0953-4075/37/7/002

Bogoliubov, N. N. (1947, 0). On the theory of superfluidity. J. Phys. USSR, 11(1), 23–32. doi: 0

Bose, S. N. (1924, Dec). Plancks gesetz und lichtquantenhypothese. Z. Physik, 26(1), 178–181. doi: 10.1007/BF01327326

Bradley, C. C., Sackett, C. A., & Hulet, R. G. (1997, Feb). Bose-einstein condensation of lithium: Observation of limited condensate number. Phys. Rev. Lett., 78(6), 985–989. doi: 10.1103/PhysRevLett.78.985

Campbell, G. K., Mun, J., Boyd, M., Medley, P., Leanhardt, A. E., Marcassa, L. G., . . . Ketterle, W. (2006). Imaging the mott insulator shells by using atomic clock shifts. Science, 313(5787), 649–652. doi: 10.1126/science.1130365

Campbell, S. L., Hutson, R. B., Marti, G. E., Goban, A., Darkwah Oppong, N., Mc-Nally, R. L., . . . Ye, J. (2017). A fermi-degenerate three-dimensional optical lattice clock. Science, 358(6359), 90–94. doi: 10.1126/science.aam5538

Castin, Y., & Dum, R. (1998, Apr). Low-temperature bose-einstein condensates in timedependent traps: Beyond the u(1) symmetry-breaking approach. Phys. Rev. A, 57(4), 3008–3021. doi: 10.1103/PhysRevA.57.3008

Dalfovo, F., Giorgini, L. P., S.and Pitaevskii, & Stringari, S. (1999, Apr). Theory of bose-einstein condensation in trapped gases. Rev. Mod. Phys., 71(3), 463–512. doi: 10.1103/RevModPhys.71.463

Davis, K. B., Mewes, M. O., Andrews, M. R., van Druten, N. J., Durfee, D. S., Kurn, D. M., & Ketterle, W. (1995, Nov). Bose-einstein condensation in a gas of sodium atoms. Phys. Rev. Lett., 75(22), 3969–3973. doi: 10.1103/PhysRevLett.75.3969

Dirac, P. A. M., & Fowler, R. H. (1926). On the theory of quantum mechanics. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 112(762), 661–677. doi: 10.1098/rspa.1926.0133

Dirac, P. A. M., & Fowler, R. H. (1929). Quantum mechanics of many-electron systems. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 123(792), 714–733. doi: 10.1098/rspa.1929.0094

Duan, L.-M., Demler, E., & Lukin, M. D. (2003, Aug). Controlling spin exchange interactions of ultracold atoms in optical lattices. Phys. Rev. Lett., 91(9), 090402. doi: 10.1103/PhysRevLett.91.090402

Einstein, A. (1925a). Quantentheorie des einatomigen idealen gases. zweite abhandlung. Berlin, Germany: Preussischen Akademie der Wissenschaften.

Fisher, M. E., Barber, M. N., & Jasnow, D. (1973, Aug). Helicity modulus, superfluidity, and scaling in isotropic systems. Phys. Rev. A, 8(2), 1111–1124. doi: 10.1103/Phys-RevA.8.1111

Fisher, M. P. A., Weichman, P. B., Grinstein, G., & Fisher, D. S. (1989, Jul). Boson localization and the superfluid-insulator transition. Phys. Rev. B, 40(1), 546–570. doi: 10.1103/PhysRevB.40.546

Fölling, S., Widera, A., Müller, T., Gerbier, F., & Bloch, I.(2006, Aug). Formation of spatial shell structure in the superfluid to mott insulator transition. Phys. Rev. Lett., 97(6), 060403. doi: 10.1103/PhysRevLett.97.060403

Foot, C. J. (1991). Laser cooling and trapping of atoms. Contemporary Physics, 32(6), 369–381. doi: 10.1080/00107519108223712

Freericks, J. K., & Monien, H. (1996, Feb). Strong-coupling expansions for the pure and disordered bose-hubbard model. Phys. Rev. B, 53(5), 2691–2700. doi: 10.1103/Phys-RevB.53.2691

Gardiner, C. W. (1997, Aug). Particle-number-conserving bogoliubov method which demonstrates the validity of the time-dependent gross-pitaevskii equation for a highly condensed bose gas. Phys. Rev. A, 56(2), 1414–1423. doi: 10.1103/Phys-RevA.56.1414

Gemelke, N., Zhang, X., Hung, C.-L., & Chin, C. (2009, Aug). In situ observation of incompressible mott-insulating domains in ultracold atomic gases. Nature, 460(7258), 995–998. doi: 10.1038/nature08244

Ginzburg, V. L., & Landau, L. D. (1950). On the Theory of superconductivity. Zh. Eksp. Teor. Fiz., 20(), 1064–1082.

Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W., & Bloch, I. (2002, January). Quantum phase transition from a superfluid to a mott insulator in a gas of ultracold atoms. Nature, 415(6867), 39–44. doi: 10.1038/415039a

Gross, C., & Bloch, I. (2017). Quantum simulations with ultracold atoms in optical lattices. Science, 357(6355), 995–1001. doi: 10.1126/science.aal3837

Gross, E. P. (1961, May). Structure of a quantized vortex in boson systems. Il Nuovo Cimento (1955-1965), 20(3), 454–457. doi: 10.1007/BF02731494

Heisenberg, W. (1926, June). Mehrkörperproblem und resonanz in der quantenmechanik. Zeitschrift für Physik, 38(6), 411–426. doi: 10.1007/BF01397160

Heisenberg, W. (1928, September). Zur theorie des ferromagnetismus. Zeitschrift f¨ür Physik, 49(9), 619–636. doi: 10.1007/BF01328601

Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W., & Zoller, P. (1998, Oct). Cold bosonic atoms in optical lattices. Phys. Rev. Lett., 81(15), 3108–3111. doi: 10.1103/PhysRevLett.81.3108

Jiménez-García, K., Compton, R. L., Lin, Y.-J., Phillips, W. D., Porto, J. V., & Spielman, I. B. (2010, Sep). Phases of a two-dimensional bose gas in an optical lattice. Phys. Rev. Lett., 105(11), 110401. doi: 10.1103/PhysRevLett.105.110401

Kaufman, A. M., Lester, B. J., Foss-Feig, M., Wall, M. L., Rey, A. M., & Regal, C. A. (2015, November). Entangling two transportable neutral atoms via local spin exchange. Nature, 527(7577), 208–211. doi: 10.1038/nature16073

Kramers, H. A. (1934). L’interaction entre les atomes magnétogènes dans un cristal paramagnétique. Physica, 1(1), 182–192. doi: 10.1016/S0031-8914(34)90023-9

Krauth, W., Caffarel, M., & Bouchaud, J.-P. (1992, Feb). Gutzwiller wave function for a model of strongly interacting bosons. Phys. Rev. B, 45(6), 3137–3140. doi: 10.1103/PhysRevB.45.3137

Kuklov, A. B., & Svistunov, B. V. (2003, Mar). Counterflow superfluidity of two-species ultracold atoms in a commensurate optical lattice. Phys. Rev. Lett., 90(10), 100401. doi: 10.1103/PhysRevLett.90.100401

Lee, P. A., Nagaosa, N., & Wen, X.-G. (2006, Jan). Doping a mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys., 78(1), 17–85. doi: 10.1103/RevModPhys.78.17

Leggett, A. J. (1999, Mar). Superfluidity. Rev. Mod. Phys., 71(2), S318–S323. doi: 10.1103/RevModPhys.71.S318

Leggett, A. J. (2001, Apr). Bose-einstein condensation in the alkali gases: Some fundamental concepts. Rev. Mod. Phys., 73(2), 307–356. doi: 10.1103/RevModPhys.73.307

Leggett, A. J., & Sols, F. (1991, Mar). On the concept of spontaneously broken gauge symmetry in condensed matter physics. Found. Phys., 21(3), 353–364. doi: 10.1007/BF01883640

Lifshitz, E. M., & Pitaevskii, L. (1980). Statistical physics part 2. Oxford, United Kingdom: Peramon Press.

London, F. (1938a, April). The .-phenomenon of liquid helium and the bose-einstein degeneracy. Nature, 141(3571), 643–644. doi: 10.1038/141643a0

London, F. (1938b, Dec). On the bose-einstein condensation. Phys. Rev., 54(11), 947–954. doi: 10.1103/PhysRev.54.947

Morgan, S. A. (2000a). A gapless theory of bose-einstein condensation in dilute gases at finite temperature (Unpublished doctoral dissertation). University of Oxford, Oxford, UK.

Morgan, S. A. (2000b, sep). A gapless theory of bose-einstein condensation in dilute gases at finite temperature. Journal of Physics B: Atomic, Molecular and Optical Physics, 33(19), 3847–3893. doi: 10.1088/0953-4075/33/19/303

Niyaz, P., Scalettar, R. T., Fong, C. Y., & Batrouni, G. G. (1991, Oct). Ground-state phase diagram of an interacting bose model with near-neighbor repulsion. Phys. Rev. B, 44(13), 7143–7146. doi: 10.1103/PhysRevB.44.7143

Paredes, B., Widera, A., Murg, V., Mandel, O., F¨ olling, S., Cirac, I., . . . Bloch, I. (2004, May). Tonks–girardeau gas of ultracold atoms in an optical lattice. Nature, 429(6989), 277–281. doi: 0.1038/nature02530

Peil, S., Porto, J. V., Tolra, B. L., Obrecht, J. M., King, B. E., Subbotin, M., . . . Phillips, W. D. (2003, May). Patterned loading of a bose-einstein condensate into an optical lattice. Phys. Rev. A, 67(5), 051603. doi: 10.1103/PhysRevA.67.051603

Penrose, O., & Onsager, L. (1956, Nov). Bose-einstein condensation and liquid helium. Phys. Rev., 104(3), 576–584. doi: 10.1103/PhysRev.104.576

Pitaevskii, L. P. (2003, Aug). Vortex lines in an imperfect bose gas. J. Exptl. Theoret. Phys. (U.S.S.R.), 13(2), 451–454. doi: 0

Rey, A. M., Burnett, K., R., R., Edwards, M., Williams, C. J., & Clark, C. W. (2003, feb). Bogoliubov approach to superfluidity of atoms in an optical lattice. J. Phys. B: At. Mol. Opt. Phys., 36(5), 825–841. doi: 10.1088/0953-4075/36/5/304

Rigol, M., Batrouni, G. G., Rousseau, V. G., & Scalettar, R. T. (2009, May). State diagrams for harmonically trapped bosons in optical lattices. Phys. Rev. A, 79(5), 053605. doi: 10.1103/PhysRevA.79.053605

Roth, R., & Burnett, K. (2003, Mar). Superfluidity and interference pattern of ultracold bosons in optical lattices. Phys. Rev. A, 67(3), 031602. doi: 10.1103/Phys-RevA.67.031602

Scalettar, R. T., Batrouni, G. G., & Zimanyi, G. T. (1991, Jun). Localization in interacting, disordered, bose systems. Phys. Rev. Lett., 66(24), 3144–3147. doi: 10.1103/PhysRevLett.66.3144

Schäfer, F., Fukuhara, T., Sugawa, S., Takasu, Y., & Takahashi, Y. (2020). Nat. Rev. Phys., 2(8), 411–425.

Shastry, B. S., & Sutherland, B. (1990, Jul). Twisted boundary conditions and effective mass in heisenberg-ising and hubbard rings. Phys. Rev. Lett., 65(2), 243–246. doi: 10.1103/PhysRevLett.65.243

Sherson, J. F., Weitenberg, C., Endres, M., Cheneau, M., & Bloch, S., I .and Kuhr. (2010, August). Single-atom-resolved fluorescence imaging of an atomic mott insulator. Nature, 467(7311), 68–72. doi: 10.1038/nature09378

Sheshadri, K., Krishnamurthy, H. R., Pandit, R., & Ramakrishnan, T. V. (1993, may). Superfluid and insulating phases in an interacting-boson model: Mean-field theory and the RPA. Europhysics Letters (EPL), 22(4), 257–263. doi: 10.1209/0295-5075/22/4/004

Silvera, I. F., & Walraven, J. T. M. (1980, Jan). Stabilization of atomic hydrogen at low temperature. Phys. Rev. Lett., 44(3), 164–168. doi: 10.1103/PhysRevLett.44.164

Spielman, I. B., Phillips, W. D., & Porto, J. V. (2007, Feb). Mott-insulator transition in a two-dimensional atomic bose gas. Phys. Rev. Lett., 98(8), 080404. doi: 10.1103/Phys-RevLett.98.080404

Svensson, E. C., & Sears, V. F. (1987). Neutron scattering by4 he and3 he. (D. F. Brewer, Ed.). North Holland, Amsterdam: Elsevier.

Trotzky, S., Cheinet, P., Fölling, S., Feld, M., Schnorrberger, U., Rey, A. M., . . . Bloch, I. (2008). Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices. Science, 319(5861), 295–299. doi: 10.1126/science.1150841

van Oosten, D., van der Straten, P., & Stoof, H. T. C. (2001, Apr). Quantum phases in an optical lattice. Phys. Rev. A, 63(5), 053601. doi: 10.1103/PhysRevA.63.053601

Ziman, J. M. (1964). Principles of the theory of solids. Cambridge, United Kingdom: Cambridge University Press.

Creative Commons License

Esta obra está bajo licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Derechos de autor 2021 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales