DFT analysis of phosphorene and oxidized phosphorene as Cu2+ adsorbent materials from aqueous solution
PDF (Spanish)

Supplementary Files

Información suplementaria (Spanish)

Keywords

Simulation
DFT
Phosphorene
Heavy metal (Cu2 )
Remediation
Oxygen role

How to Cite

Florez, E., & Correa, J. (2023). DFT analysis of phosphorene and oxidized phosphorene as Cu2+ adsorbent materials from aqueous solution. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 47(182), 151-159. https://doi.org/10.18257/raccefyn.1763

Abstract

We conducted a systematic study using the density functional theory (DFT) to provide a better understanding of the role of oxygen concentration in pristine phosphorene during Cu2+ adsorption in aqueous systems. The electronic characterization of phosphorene and oxidized phosphorene was done by calculating the gap and the chemical hardness. From the results, we concluded that the oxidized systems have a lower gap and hardness than the pristine system and that as the oxygen concentration increases, these values decrease compared to the other systems. The interaction of Cu2+ with the different surfaces was characterized using atomic charges, bond index, and X-Ray Photoelectron Spectroscopy (XPS). The adsorption energy values indicated that when phosphorene is oxidized, the interaction with Cu2+ is stronger compared to the pristine system and that the increase in the oxygen concentrationalso increases the adsorption capacity of phosphorene, which is related to the ease that this system has for the transfer to Cu2+ due to its small gap and chemical hardness values. Our results contribute to a better understanding of the effect of phosphorene surface oxygen concentration on Cu2+ adsorption reinforcing the idea that this type of 2D  materials may potentially be used for heavy metal removal from wastewater.

PDF (Spanish)

References

Ajith, M.P., Aswathi, M., Priyadarshini, E., Rajamani, P. (2021). Recent innovations of nanotechnology in water treatment: A comprehensive review. Bioresource Technology, 342, 126000. https://doi.org/10.1016/j.biortech.2021.126000

Becke, A.D. (1993). Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98, 5648. https://doi.org/10.1063/1.464913

Chen, O.P., Lin, Y. J., Cao, W. Z., Chang, C. T. (2017). Arsenic removal with phosphorene and adsorption in solution. Materials Letters, 190, 280-282. https://doi.org/10.1016/j.matlet.2017.01.030

Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., . . . Fox, D.J. (2009). Gaussian 09 Revision E.01. Gaussian, Inc., Wallingford CT.

Gómez-Pérez, J.F., Correa, J.D., Bartus Pravda, C., Kónya, Z., Kukovecz, Á. (2020). Danglingto-Interstitial Oxygen Transition and Its Modifications of the Electronic Structure in Few-Layer Phosphorene. Journal of Physical Chemistry C, 124(44), 24066-24072. https://doi.org/10.1021/acs.jpcc.0c06542

Hamid, Y., Liu, L., Usman, M., Naidu, R., Haris, M., Lin, Q., Ulhassan, Z., Hussain M.I., Yang, X. (2022). Functionalized biochars: Synthesis, characterization, and applications for removing trace elements from water. Journal of Hazardous Materials, 437, 129337. https://doi.org/10.1016/j.jhazmat.2022.129337

Hoangh, A.T., Nizetic, S., Cheng, C.K., Luque, R., Thomas, S., Banh, T.L., Pham,V.V., Nguyen, X.P. (2022). Heavy metal removal by biomass-derived carbon nanotubes as a greener environmental remediation: A comprehensive review. Chemosphere, 287, 131959. https://doi.org/10.1016/j.chemosphere.2021.131959

Huang, Y. H., Hsueh, C. L., Cheng, H. P., Su, L.C., Chen, C. Y. (2007). Thermodynamics and kinetics of adsorption of Cu(II) onto waste iron oxide. Journal of Hazardous Materials, 144, 406-411. https://doi.org/10.1016/j.jhazmat.2006.10.061

Keith, T.A., Frisch, M.J. (1994). Inclusion of Explicit Solvent Molecules in a Self-Consistent-Reaction Field Model of Solvation. En D. A. Smith, Modeling the Hydrogen Bond (pp 22-35). American Chemical Society. https://doi.org/10.1021/bk-1994-0569.ch003 Kharwar, S., Singh, S. (2021). First-principles investigation of zigzag graphene nanoribbons based nanosensor for heavy metal detector. Materials Today: Proceedings, 47, 2227-2231. https://doi.org/10.1016/j.matpr.2021.04.183

Koopmans, T. (1934). Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica, 1, 104-113. https://doi.org/10.1016/S0031-8914(34)90011-2

Liaquat, H., Imran, M., Latif, S., Hussain, N., Bilal, M. (2022). Multifunctional nanomaterials and nanocomposites for sensing and monitoring of environmentally hazardous heavy metal contaminants. Environmental Research, 214, 113795. https://doi.org/10.1016/j.envres.2022.113795

Mason, L.H., Harp, J. P., Han, D.Y. (2014). Pb Neurotoxicity: Neuropsychological Effects of Lead Toxicity. BioMed Research International, 214, Article ID 840547, 8 pages. https://doi.org/10.1155/2014/840547

Menazea, A.A., Ezzat, H.A., Omara, W., Basyouni, O.H., Ibrahim, S. A., Mohamed, A.A., Tawfik, W., Ibrahim, M.A. (2020). hitosan/graphene oxide composite as an effective removal of Ni, Cu, As, Cd and Pb from wastewater. Computational and Theoretical Chemistry 1189, 112980. https://doi.org/10.1016/j.comptc.2020.112980

Pan, J., Gao, B., Guo, K., Gao, Y., Xu, X., Yue, Q. (2022). Insights into selective adsorption mechanism of copper and zinc ions onto biogas residue-based adsorbent: Theoretical calculation and electronegativity difference. Science of the Total Environment, 805, 150413. https://doi.org/10.1016/j.scitotenv.2021.150413

Parr, R.G., Pearson, R.G. (1983). Absolute hardness: companion parameter to absolute electronegativity. Journal of the American Chemical Society, 105, 7512-7516.https://doi.org/10.1021/ja00364a005

Pearson, R.G. (2005). Chemical hardness and density functional theory. Journal of Chemical Sciences volume, 117, 369-377. https://doi.org/10.1007/BF02708340

Perdew, J.P., Burke, K., Wang, Y. (1996). Generalized gradient approximation for the exchangecorrelation hole of a many-electron system. Physycs Review B, 54(23), 16533-16539. https://doi.org/10.1103/PhysRevB.54.16533

Reed, A.E., Curtiss, L.A., Weinhold, F. (1988). Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chemical Reviews, 8, 899-926. https://doi.org/10.1021/cr00088a005

Srivastava, M., Srivastava, A. (2021). DFT analysis of nitrogen and Boron doped Graphene sheet as lead detector. Materials Science and Engineering B, 269, 115165. https://doi.org/10.1016/j.mseb.2021.115165

Ugwu, E.I., Othmani, A., Nnaji, C.C. (2022). A review on zeolites as cost-effective adsorbents for removal of heavy metals from aqueous environment. International Journal of Environmental Science and Technology, 19, 8061-8084. https://doi.org/10.1007/s13762-021-03560-3

Ullah, N., Mansha, M., Khan, I., Qurashi, A. (2018). Nanomaterial-based optical chemical sensors for the detection of heavy metals in water: Recent advances and challenges. Trends in Analytical Chemistry, 100, 155-166. https://doi.org/10.1016/j.trac.2018.01.002

Uogintė, I., Lujanienė, G., Mažeika, K. (2019). Study of Cu (II), Co (II), Ni (II) and Pb (II) removal from aqueous solutions using magnetic Prussian blue nano-sorbent. Journal of Hazardous Materials. Journal of Hazardous Materials, 269, 226-235. https://doi.org/10.1016/j.jhazmat.2019.02.039

Wang, X., Kong, L., Zhou, S., Ma, C., Lin, W., Sun, X., Kirsanov, D., Legin, A., Wan, H., Wang, P. (2022). Development of QDs- based nanosensors for heavy metal detection: A review on transducer principles and in- situ detection. Talanta, 239, 122903. https://doi.org/10.1016/j.talanta.2021.122903

Weigend, F., Ahlrichs, R. (2005). Balanced basis sets of split valences, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics, 7, 3297-3305. https://doi.org/10.1039/B508541A

Wijaya, A.R., Ouchi, A. K., Tanaka, K., Cohen, M.D., Sirirattanachai, S., Shinjo, R., Ohde, S. (2013). Evaluation of heavy metal contents and Pb isotopic compositions in the Chao Phraya River sediments: Implication for anthropogenic inputs from urbanized areas, Bangkok. Journal of Geochemical Exploration, 126-127, 45-54. https://doi.org/10.1016/j.gexplo.2012.12.009

Zhao, Y., Truhlar, D. (2008). Density Functionals with Broad Applicability in Chemistry. Acc.Chem. Res, 41(2), 157-167. https://doi.org/10.1021/ar700111a

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales

Downloads

Download data is not yet available.