Circulación general de la atmósfera alrededor de Colombia
PDF

Archivos suplementarios

PDF
PDF
PDF

Cómo citar

Mesa-Sánchez, O. J., & Rojo-Hernández, J. D. . (2020). Circulación general de la atmósfera alrededor de Colombia. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 44(172), 857–875. https://doi.org/10.18257/raccefyn.899

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

La precipitación media multianual en las llanuras de la costa Pacífica colombiana varía entre los 8.000 y los 13.000 mm. El promedio anual en Puerto López (Cauca) (77°14’56,3”O, 2°50’43,0”N) es de 13.159 mm (1960-2018), probablemente el más alto del planeta. Tal cantidad de precipitación también implica el establecimiento de una fuente de calor diabática por condensación, la cual, a su vez, es responsable de la generación de la circulación atmosférica sobre el norte de Suramérica y Mesoamérica entre mediados de marzo y el fin de noviembre. En el presente trabajo se aplicó un modelo simple de circulación inducida por una fuente de calor diabática para estudiar la circulación general de la atmósfera alrededor de Colombia. Los resultados indicaron que la mencionada fuente de calor produce por sí misma fuertes vientos del oeste como respuesta a la propagación de media onda de Rossby sobre Mesoamérica y el Pacífico Este. Hacia el este de la fuente de calor, una onda Kelvin es responsable de los vientos del este que viajan desde el océano Atlántico tropical hacia Colombia. Ambas ondas, la planetaria y la Kelvin, dominan las trayectorias de flujo de los campos de vientos a bajo y alto nivel en la tropósfera sobre Colombia y su vecindario. Las observaciones documentadas sobre la circulación general de la atmósfera en el norte de Suramérica y Mesoamérica son suficientemente sólidas para respaldar la afirmación de que un conjunto de ondas inducidas por una fuente de calor y atrapadas en el ecuador explican la circulación general de la atmósfera  sobre Colombia y su vecindario.

https://doi.org/10.18257/raccefyn.899
PDF

Citas

Adler, R., Gu, G., Huffman, G. (2011). Estimating climatological bias errors for the global precipitation climatology project GPCP. Journal of Apply Meteorology and Climatology. 51 (1): 84-99.

Álvarez‐Villa, O. D., Vélez, J. I., Poveda, G. (2011). Improved long‐term mean annual rainfall fields for Colombia. International Journal of Climatology. 31 (14): 2194-2212.

Amador, J. A., Alfaro, E. J., Lizano, O. G., Magaña, V. O. (2006). Atmospheric forcing of the eastern tropical Pacific: A review. Progress in Oceanography. 69 (2): 101-142.

Amador, J. A. & Magana, V. (1999). Dynamics of the low level jet over the Caribbean Sea. In Preprints, Third Conference on Hurricanes and Tropical Meteorology.

Amador, J. A. (2008). The intra‐Americas sea low‐level jet. Annals of the New York Academy of Sciences. 1146 (1): 153-188.

Arias, P. A., Martínez, J. A., Vieira, S. C. (2015). Moisture sources to the 2010-2012 anomalous wet season in northern South America. Climate Dynamics. 45 (9-10): 2861-2884.

Arnett, A. B. & Steadman, C. R. (1970). Low-level wind flow over eastern Panama and northwestern Colombia. Technical report, ESSA Technical Memorandum ERLTM-ARL 26, U.S. Department of Commerce, Environmental Science Services Administration Research Laboratories, Air Resources Lab. Silver Spring. Mryland. 73 pp, 1970.

Chan, S. C. & Nigam, S. (2009). Residual diagnosis of diabatic heating from ERA-40 and NCEP reanalyses: Intercomparisons with TRMM. Journal of climate. 22 (2): 414-428.

Chelton, D. B., Freilich, M. H., Esbensen, S. K. (2000). Satellite observations of the wind jets off the Pacific coast of Central America. Part I: Case studies and statistical characteristics. Monthly Weather Review. 128 (7): 1993-2018

Cook, K. H. & Vizy, E. K. (2010). Hydrodynamics of the Caribbean low-level jet and its relationship to precipitation. Journal of Climate. 23 (6): 1477-1494.

Cruz, C. (2017). Efectos de la variabilidad de la estructura dinámica y termodinámica del calentamiento atmosférico en la climatología de Colombia. Tesis de Maestría en Ingeniería-

Recursos Hidráulicos. Facultad de Minas. Universidad Nacional de Colombia. Medellín

Durán-Quesada, A. M., Reboita, M., Gimeno, L. (2012). Precipitation in tropical America and the associated sources of moisture: a short review. Hydrological Sciences Journal. 57 (4): 612-624.

Eslava, J. A. (1993). Climatología y diversidad climática de Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. 18 (71): 507-538.

Gill, A. E. & Clarke, A. J. (1974). Wind-induced upwelling, coastal currents and sea-level changes. Deep-Sea Research and Oceanographic Abstracts. 21 (5): 325-345.

Gill, A. (1980). Some simple solutions for heat‐induced tropical circulation. Quarterly Journal of the Royal Meteorological Society. 106 (449): 447-462.

Holton, J. R. & Hakim, G. J. (2012). An introduction to dynamic meteorology. 245 (Vol. 88). Academic Press. p. 507.

Kessler, W. S. & Gourdeau, L. (2006). Wind‐driven zonal jets in the South Pacific Ocean. Geophysical Research Letters. 33 (3): L03608. Doi:10.1029/2005GL025084.

López, M. E. (1966). Cloud seeding trials in the rainy belt of western Colombia. Water Resources Research. 2 (4): 811-823.

Magaña, V., Amador, J. A., Medina, S. (1999). The midsummer drought over Mexico and Central America. Journal of Climate. 12 (6): 1577-1588.

Makarieva, A. M. & Gorshkov, V. G. (2006). Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrology and Earth System Sciences Discussions. 3 (4): 2621-2673.

Makarieva, A. M. & Gorshkov, V. G. (2010). The biotic pump: Condensation, atmospheric dynamics and climate. International Journal of Water. 5 (4): 365-385.

Mapes, B. E., Warner, T. T., Xu, M. (2003). Diurnal patterns of rainfall in northwestern South America. Part III: Diurnal gravity waves and nocturnal convection offshore. Monthly Weather Review. 131 (5): 830-844.

Matsuno, T. (1966). Quasi-geostrophic motions in the equatorial area. Journal of the Meteorological Society of Japan. Ser. II. 44 (1): 25-43.

Mejía, J. F. & Poveda, G. (2005). Ambientes atmosféricos de sistemas convectivos de meso-escala sobre Colombia durante 1998 según la misión TRMM y el re-analysis NCEP/NCAR. Revista de La Academia Colombiana de Ciencias. 29: 495-514.

Mesa, O. J., Poveda, G., Carvajal, L. F. (1997) Introducción al clima de Colombia. Universidad Nacional de Colombia, 1997. p. 390.

Mestas-Nuñez, A. M., Enfield, D. B., Zhang, C. (2007). Water vapor fluxes over the Intra-Americas Sea: seasonal and interannual variability and associations with rainfall. Journal of Climate. 20 (9): 1910-1922.

Nieuwolt, S. (1977). Tropical climatology. John Wiley & Sons, Inc., New York. 352 p.

Pabón-Caicedo, J. D., Eslava-Ramírez, J. A., Gómez-Torres, R. E. (2001) Generalidades de la distribución espacial y temporal de la temperatura del aire y de la precipitación en Colombia. Meteorología Colombiana. 4: 47-59.

Poveda-Jaramillo, G. (1998). Retroalimentación dinámica entre el fenómeno el niño-oscilación del sur y la hidrología de Colombia (Doctoral dissertation, Universidad Nacional de Colombia, Sede Medellín).

Poveda, G. & Mesa, O. J. (1997). Feedbacks between Hydrological Processes in Tropical South America and Large-Scale Ocean–Atmospheric Phenomena. Journal of Climate. 10 (10): 2690-2702.

Poveda, G. & Mesa, O. (1999). La corriente de chorro superficial del Oeste (“Del Chocó”) y otras dos corrientes de chorro en Colombia: Climatología y variabilidad durante las fases del ENSO. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. 23 (89): 517-528.

Poveda, G. & Mesa, O. J. (2000). On the existence of Lloró (the rainiest locality on Earth): Enhanced ocean‐land‐atmosphere interaction by a low‐level jet. Geophysical Research Letters. 27 (11): 1675-1678.

Poveda, G., Mesa, O., Agudelo, P., Álvarez, J., Arias, P., Moreno, H., et al. (2002). Influencia de ENSO, oscilación Madden-Julián, ondas del Este, huracanes y fases de la Luna en el ciclo diurno de la precipitación en los Andes Tropicales de Colombia. Meteorología Colombiana, 5: 3–12, 2002.

Poveda, G., Waylen, P., Pulwarty, R. S. (2006). Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeograp y, Palaeoclimatology, Palaeoecology. 234 (1): 3-27.

Poveda, G., Jaramillo, L., Vallejo, L. F. (2014). Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers. Water Resources Research. 50 (1): 98-118.

Romero-Centeno, R., Zavala-Hidalgo, J., Raga, G. B. (2007). Midsummer gap winds and lowlevel circulation over the eastern tropical Pacific. Journal of Climate. 20 (15): 3768-3784.

Sakamoto, M. S., Ambrizzi, T., Poveda, G. (2011). Moisture sources and life cycle of convective systems over western Colombia. Advances in Meteorology. vol. 2011, Article ID 890759, 11 pages, 2011. https://doi.org/10.1155/2011/890759

Serra, Y. L., Kiladis, G. N., Hodges, K. I. (2010). Tracking and mean structure of easterly waves over the Intra-Americas Sea. Journal of Climate. 23 (18): 4823-4840.

Snow, J. W. (1975). The climates of northern South America. University of Wisconsin-- Madison.

Stensrud, D. J. (1996). Importance of low-level jets to climate: A review. Journal of Climate. 9 (8): 1698-1711.

Takahashi, K. & Martínez, A. G. (2017). The very strong coastal El Niño in 1925 in the far-eastern Pacific. Climate Dynamics. 52 (12): 7389-7415, 2019.

Urrea, V., Ochoa, A., Mesa, O. Seasonality of rain- fall in Colombia. Water Resources Research. 55 (5): 2019. Doi: 10.1029/2018WR023316

Velasco, I. & Fritsch, J. M. (1987). Mesoscale convective complexes in the Americas. Journal of Geophysical Research: Atmospheres. 92 (D8): 9591-9613.

Wang, C. (2007). Variability of the Caribbean low-level jet and its relations to climate. Climate Dynamics. 29 (4): 411-422.

Wang, C. & Lee, S. (2007). Atlantic warm pool, Caribbean low‐level jet, and their potential impact on Atlantic hurricanes. Geophysical Research Letters. 34, L02703, doi:10.1029/2006GL028579.

Wang, C. (2002). Atlantic climate variability and its associated atmospheric circulation cells. Journal of Climate. 15 (13): 1516-1536.

Wang, C. (2004). ENSO, Atlantic climate variability, and the Walker and Hadley circulations. In The Hadley circulation: present, past and future (pp. 173-202). Springer.

Webster, P. J. (1972). Response of the tropical atmosphere to local, steady forcing. Mon. Wea. Rev.Whyte, F. S., Taylor, M. A., Stephenson, T. S., Campbell, J. D. (2008). Features of the Caribbean low level jet. International Journal of Climatology. 28 (1): 119-128.

Xie, S.-P., Xu, H., Kessler, W. S., Nonaka, M. (2005). Air–sea interaction over the eastern Pacific warm pool: Gap winds, thermocline dome, and atmospheric convection. Journal of Climate. 18 (1): 5-20.

Xie, S. P., Xu, H., Saji, N. H., Wang, Y., Liu, W. T. (2006). Role of narrow mountains in large-scale organization of Asian monsoon convection. Journal of climate. 19 (14): 3420-3429.

Zhang, K., Randel, W. J., Fu, R. (2017). Relationships between outgoing longwave radiation and diabatic heating in reanalyses. Climate Dynamics. 49 (7-8): 2911-2929.

Zuluaga, M. D. & Poveda, G. (2004). Diagnostics of mesoscale convective systems over Colombia and the eastern tropical Pacific during 1998-2002. Avances en Recursos Hidráulicos. 11: 145-160.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2020 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales