Resumen
Este estudio se enmarca en el campo de la ciencia e ingeniería de materiales enfocada al desarrollo de nuevos compuestos amigables con el medio ambiente. En este contexto, se evaluaron cinco fibras naturales colombianas: damagua (Poulsenia armata), guérregue, palma estera (Astrocaryum malybo), caña flecha (Gynerium sagitatum) e iraca (Carludovica palmata), con el fin de estudiar su viabilidad como refuerzo en materiales compuestos. Mediante diversas mediciones se determinaron las propiedades térmicas, mecánicas y morfológicas de las fibras naturales. El análisis térmico se hizo utilizando termogravimetría (TGA), y se demostró el carácter hidrofílico de las fibras y su estabilidad a elevadas temperaturas. Se ensayó la resistencia de las fibras a la tracción bajo condiciones de fuerzas axiales estáticas, y se encontraron variaciones en las propiedades mecánicas de cada uno de los especímenes. Las fibras de guérregue y caña flecha registraron valores de resistencia máxima competitivos muy similares a los reportados en otras investigaciones con fibras naturales, en tanto que las otras tres fibras tuvieron bajo desempeño. La microestructura de las fibras se examinó mediante microscopía electrónica de barrido (SEM), y las imágenes revelaron una morfología compuesta por el lumen y la pared celular con variación entre los tamaños, comportamiento éste asociado a las propiedades mecánicas de las fibras naturales estudiadas. En conclusión, dos fibras presentaron las mejores propiedades y cumplieron con las condiciones de estabilidad térmica y resistencia mecánica que las hace aptas como refuerzo en la fabricación de biocompuestos con matrices poliméricas. © 2017. Acad. Colomb. Cienc. Ex. Fis. Nat.
Citas
Alves, M.E., Castro, T.V., Martins, O.D.F., Silva, F., Toledo, R.D. (2013). The effect of fiber morphology on the tensile strength of natural fibers. J Materials Research and Technology. 2: 149-157.
Arpitha, G.R., Yogesha, B. (2017). An overview on mechanical property evaluation of natural fiber reinforced polymers. Materials today: Proceedings. 4: 2755-2760.
Artesanías de Colombia. Programa de atención a la población desplazada APD. Fecha de consulta: 14 de noviembre de 2014. Disponible en: http://www.artesaniasdecolombia. com.co/PortalAC/C_noticias/artesanias-de-colombiarealiza- capacitacion-a-indigenas-wounaan_1212.
Artesanías de Colombia, ICONTEC, FOMIPYME. (2008). Diagnóstico de la calidad Oficio Artesanal tejeduría. Proyecto de mejoramiento en la calidad y certificacion de productos de artesanos en 13 comunidades ubicadas en diversos departamentos. Aguadas, Caldas. Artesanias de Colombia .40 p.
Azwa, Z.N., Yousif, B.F., Manalo, A.C., Karunasena, W. (2013). A review on thedegradability of polymeric composites based on natural fibres. Materials and Design. 47: 424-442.
Balaji, A.N., Nagarajan, K.J. (2017). Characterization of alkali treated and untreated new cellulosic fiber from Saharan aloe vera cactus leaves. Carbohydr Polym. 2017, 174:200-208. doi: 10.1016/j.carbpol.2017.06.065.
Bernal, G., Galeano, R. (2013). Cosechar sin destruir. Aprovechamiento sostenible de las palmas colombianas. Bogotá, D.C.: Universiad Nacional de Colombia- Colciencias. ISBN: 978-958-761-611-8. 244p.
Borgtoft Pedersen, H. (1994). Mocora palm fibers: Use and management of Astrocaryum standleyanum (Arecaceae) in Ecuador. Economic Botany. 3: 310-325.
Calderón, E., Galeano, G., García, N. (2005). Libro rojo de las plantas de Colombia. Bogotá, D.C.: Instituto Alexander Von Humbolt-Instituto de Ciencias Naturales, Universidad Nacional de Colombia. Vol 2. 441 p.
Cardona, V., Fuentes, A.F., Cayola, L. (2005). Las moraceas de la región Madidi, Bolivia. Ecología en Bolivia. 40: 212-264.
Castillo, A. (2010). Manual dentrológico de las principales especies de interés comercial actual y potencial de la zona del Alto Huallaga. Lima Perú, Camara Nacional Forestal. 83 p.
Chandramohan, D., Marimuthu K.A. (2011). A Review on natural fibers. IJRRAS. 8: 194-206.
Contreras, M.F., Hormaza, W.A., Marañon, A. (2009). Fractografía de la fibra natural extraída del fique y de un material compuesto reforzado con tejido de fibra de fique y matriz resina poliéster. Suplemento de la Revista Latinoamericana de Metalurgia y Materiales. S1 (1): 57-67.
Cuéllar, A., Muñoz, I. (2010). Fibra de guadua como refuerzo en matrices poliméricas. DYNA. 77: 137-142.
D’Almeida, J.R.M., Aquino, R.C.M.P., Monteiro, SN. (2006). Tensile mechanical properties, morphological aspects and chemical characterization of piassava (Attalea funifera) fibres. Composites Part A: Applied Science and Manufacturing. 37: 1473-1479.
Dai, D., Fan, M. (2010). Characteristic and performance of elementary hemp fibre. Materials Sciences and Applications. 1: 336-342.
Das, S.,Saha AK.,Choudhury PK.,Basak RK.,Mitra BC.,Todd T., Lang, S., Rowell, RM. (2000). Effect of steam pretreatment of jute fiber on dimensional stability of jute composite. J Appl Polymer Science. 76: 1652-1661.
DeRosa, I., Kenny, JM., Maniruzzaman, M., Moniruzzaman, Md., Monti, M., Puglia, D. Santulli, C., Sarasini, F. (2011). Effect of chemical treatments on the mechanical and thermal behaviour of okra (Abelmoschus esculentus) fibres. Composites Science and Technology. 71: 246-254.
Dransfield, J. H. (2015). Royal Botanic Gardens and Ho’omaluhia Botanical Gardens. Fecha de consulta: 13 de noviembre de 2014. Disponible en: http://www.palmpedia.net/wiki/Astrocaryum_standleyanum
Elkhaoulani, A., Arrakhiz, F.Z., Benmoussa, K., Bouhfid, R., Qaiss, A. (2013). Mechanical and thermal properties of polymer composite based on natural fibers: Moroccan hemp fibers/polypropylene. Materials and Design. 49: 203-208.
Escobar, E . (2001). Presentación de Yotoco, “Reserva Natural”, Flora: plantas vasculares. Palmira. Valle: Universidad Nacional de Colombia, Sede Palmira. 277 p.
Fiore, V., Valenza, A., Di Bella, G. (2011). Artichoke (Cynara cardunculus L.) fibres as potential reinforcement of composite structures. Composites Science and Technology. 71:1138-1144.
Fiore, V., Scalici T., Valenza, A. (2014). Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohydrate Polymers. 106: 77–83.
Fuentes, C.A., Willekens, P., Petit, J., Thouminot, C., Müssig J., Trindade L.M., et al. (2017). Effect of he middle lamella biochemical composition on the non-linear behaviour of technical fibres of hemp under tensile loading using strain mapping. Composites: Part A. 101: 529-542.
Galeano, G., Bernal, R. (2010). Palmas de Colombia, Guía de Campo. Bogotá, D.C. Universidad Nacional de Colombia. Ministerio de Ambiente y Desarrollo sostenible. 688 p.
García-Pérez, M., Chaala, A., Yang, J., Roy, C. (2001). Copyrolysis of sugarcane bagasse with petroleum residue. Part I: Thermogravimetric analysis. Fuel. 80: 1245-1258.
Girisha, C.S., Srinivas, GR. (2012). Sisal/coconut coir natural fibers-epoxy composites: Water absorption and mechanical properties. International J Engineering Innovative Techn. 2:166-170.
Gobernación de Córdoba. (2012). Mejoramiento de la cadena productiva de la cañaflecha (Gynerium sagittatum). Montería, Córdoba: proyecto de investigacion tecnológica. Gobernación de Córdoba. 35 p.
Guo, M., Zhang, T.H., Chen, B.W., Cheng, L. (2014). Tensile strength analysis of palm leaf sheath fiber with Weibull. Composites: Part A. 62: 45-51.
Hossain, MK., Karim, MR., Chowdhury, MR., Imam, MA., Hosur, M., Jeelani, S., et al. (2014). Comparative mechanical and thermal study of chemically treated and untreated single sugarcane fiber bundle. Industrial Crops and Products. 58:78-90.
Hughes, M. (2012). Defects in natural fibres: Their origin, characteristics and implications for natural fibre-reinforced composites. Journal of Materials Science. 47: 599-609.
Indran, S., Raj, R.E. (2015). Characterization of new natural cellulosic fiber from Cissus quadrangularis stem. Carbohydrate Polymers. 117: 392-399.
Indran, S., Raj, R.E., Sreenivasan, V.S. (2014). Characterization of new natural cellulosic fiber from Cissus quadrangularis root. Carbohydrate Polymers. 110: 423-429.
Ishak, M.R., Sapuan, S.M., Leman, Z., Rahman, M.Z.A., Anwar, U.M.K., Siregar, J.P. (2013). Sugar palm (Arenga pinnata): Its fibres, polymers and composites. Carbohydrate Polymers. 91: 699-710.
Kommula, V.P., Kanchireddy, O.R., Shukla, M., Marwala, T. (2014). Effect of Acid Treatment on the Chemical, Structural, Thermal and Tensile Properties of Napier Grass Fibre Strands International Conference on Advances in Marine, Industrial and Mechanical Engineering (ICAMIME’2014). Johannesburg (South Africa): 45-51.
Kovacevic, Z., Bischof, S., Fan, M. (2015). The influence of Spartium junceum L. fibres modified with montmorrilonite nanoclay on the thermal properties of PLA biocomposites. Composites Part B. 78: 122-130.
Linares, E., Galeano, G., García, N., Figueroa, Y. (2008.). Fibras vegetales empleadas en Artesanías en Colombia. Bogotá: Artesanías de Colombia, Instituto de Ciencias Naturales, Universidad Nacional de Colombia. 328 p.
Liu, W., Mohanty, A., Drzal, L.T., Misra, M. (2004). Effects of alkali treatment on the structure, morphology and thermal properties of native grass fibers as reinforcements for polymer matrix composites. J Mater Sci. 39: 1051-1054.
Lozano, W.A. (2011). Determinación del número mínimo de observaciones en investigación, obviando las estimaciones de la varianza de datos. Investia y Didactica Ambiental. 10:54-61.
Maache, M., Bezazi, A., Amroune, S., Scarpa, F., Dufresned, A. (2017). Characterization of a novel natural cellulosic fiber from Juncus effusus L. Carbohydrate Polymers. 171:163–172.
Maranon, A., Páez, D.C. (2011). Caracterización micromecánica interfacial de un compuesto de ácido láctico reforzado con fibras naturales de cumare. Bogotá: Tesis de Maestria, Facultad de Ingeniería Mecánica. Universidad de los Andes.
Miranda, M.I.G., Bica, C.D.I., Nachtigall, S.M.B., Rehman, N., Rosa, S.M.L. (2013). Kinetical thermal degradation study of maize straw and soybean hull celluloses by simultaneous DSC–TGA and MDSC techniques. Thermochimica Acta. 565: 65-71.
Mohanty, A.K., Misra, M., Hinrichsen, G. (2000). Biofibers, biodegradable polymers and biocomposites: an overview. Macromol Mat Eng. 276/277: 1-24.
Monteiro, SN., Calado, V., Rodríguez, RJS., Margem, FM. (2012). Thermogravimetric behavior of natural fibers rein forced polymer composites—An overview. Materials Science & Engineering A. 557: 17-28.
Moriana, R., Vilaplanaa, F., Karlssona, S., Ribes, A. (2014). Correlation of chemical, structural and thermal properties of natural fibres for their sustainable exploitation. Carbo hydrate Polymers. 112: 422-431.
Müssig, J. (2010). Industrial Applications of Natural Fibres Structure, Properties and Technical Applications. University of Applied Sciences, Bremen, Germany: John Wiley & Sons, Ltd. 538 p.
Pickering, K.L., Aruan, M.G., Le, T.M. (2016). A review of recent developments in natural fibre composites and their mechanical performance. Composites: Part A. 83: 98-112.
Pohl, RW. (1983). Gynerium sagittatum (cañaflecha cane). In: D.H. Janzen. Costa Rican natural history. University of Chicago Press. 1: 248-249.
Porras, A., Maranon, A., Ashcroft, I.A. (2016). Characterization of a novel natural cellulose fabric from Manicaria saccifera palm as possible reinforcement of composite materials. Composites Part B: Engineering. 74: 66-73.
Quiñones, C. (2000). El tejido de las tribus indígenas de Colombia. Instituto Colombiano de Cultura Hispánica, Biblioteca Luis Angel Arango. Bogotá. Tomo I: 109-116.
Ramírez, G., Klinger, W., Guerra JM., Vargas, L., Valoyes, Z., Robledo, D., Murillo, W., Moreno, N., Cuesta, J.,Cuesta, JJ.,Quezada, Z., Carabali, F. (2011). Plan de manejo del damagua para tres comunidades del Baudó. Quibdó, Chocó. IIAP, Dama-guarte. 89p.
Rodríguez, L.J., Orrego, C.E., Sarache, W.A. (2014). Elaboración de un material biocompuesto a partir de la fibra de plátano. Manizales: Tesis de Maestria, Universidad Nacional de Colombia. Departamento de Ingeniería Industrial, Manizales, Colombia.
Romero, MH., Maldonado, J., Bogotá, JD., Usma, S., Umaña, AM., Murillo, J., Restrepo, S., Álvarez, M., Palacios, MT, Valbuena, MS.,Mejía, SL, Aldana J. (2009). Informe sobre el estado de la biodiversidad en Colombia 2007-2008: Piedemonte orinoquense, sabanas y bosques asociados al norte del río Guaviare Informe sobre el estado de la biodiversidad en Colombia 2007-2008. Bogotá. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. 154 p.
Rong, M.Z., Zhang, M.Q., Liu, Y., Yang, G.C., Zeng, H.M. (2001). The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Composites Science and Technology. 6: 1437-1447.
Saravanakumar, S.S., Kumaravel, A., Nagarajan, T., Sudhakar, P., Baskaran, R. (2013). Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark. Carbohydrate Polymers. 92: 1928-1933.
Sarikanat, M., Seki, Y., Sever, K., Durmuskahya, C. (2014). Determination of properties of Althaea officinalis L. (Marshmallow) fibres as a potential plant fibre in polymeric composite materials. Composites: Part B. 57: 180-186.
Spinacé, M.A.S., Lambert, C.S., Fermoselli, K.K.G., DePaoli, M.A. (2009). Characterization of lignocellulosic curaua fibres. Carbohydrate Polymers. 77: 47-53.
Srinivasan, V.S., Rajendra S., Sangeetha, D., Vijaya, R. (2014). Evaluation of mechanical and thermal properties of banana–flax based natural fibre composite. Materials and Design. 60: 620-627.
Thygesen, A. (2006). Properties of hemp fibre polymer composites-An optimisation of fibre properties using novel defibration methods and fibre characterisation. Denmark: Royal Veterinary and Agricultural University. N.11. 148 p.
Ventas artesanías en guérregue. Ventas artesanías en guerregue. Comunidad Woonan. Video promocional. Fecha de consulta:16 septiembre 2014. Disponible en: www.youtube.com.EYoZ6OfNHgI.
Yang, H., Yan, R., Chen, H., Lee, DH., Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 86: 1781-1788.
Yusriah, L., Sapuan, S,M., Zainudin, E,S., Mariatti, M. (2014). Characterization of physical, mechanical, thermal and morphological properties of agro-waste betel nut (Areca catechu) husk fibre. Journal of Cleaner Production. 72:174-180.
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2018 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales