Patrones en la naturaleza: más que un diseño inspirador

Cómo citar

Serna, H., & Barragán, D. (2017). Patrones en la naturaleza: más que un diseño inspirador. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat., 41(160), 349-360.


La descarga de datos todavía no está disponible.
Citas en Scopus
Perfil en Google Scholar
Citado por:

Métricas Alternativas


En la naturaleza observamos una amplia variedad de colores, ritmos y formas, a toda escala y en sistemas animados e inanimados. Desde hace décadas los patrones y ritmos de la naturaleza han sido objeto de estudio y fuente de inspiración en el desarrollo tecnológico y en el bienestar del ser humano. Hoy entendemos que el diseño de los patrones de la naturaleza obedece a principios de funcionalidad y de eficiencia. En este artículo nos enfocamos en aspectos fisicoquímicos para mostrar cómo el estudio de los patrones espacio-temporales se convirtió en un área de gran interés e investigación en ciencias naturales. En particular, abordamos algunos sistemas donde la formación de patrones se explica mediante el acople entre procesos químicos y de transporte, tales como los jardines químicos, la precipitación periódica y los patrones de Turing. © 2017. Acad. Colomb. Cienc. Ex. Fis. Nat.


Al-Ghoul, M., & Eu, B. C. (1996). Hyperbolic reaction-diffusion equations and irreversible thermodynamics. Physica. 90:119-153.

Armand, M., Endres, F., MacFarlane, D. R., Ohno, H., & Scrosati, B. (2009). Ionic-liquid materials for the electrochemical challenges of the future. Nature Materials. 8: 621-629.

Badr, L., & Epstein, I. R. (2017). Size-controlled synthesis of Cu2O nanoparticles via reaction-diffusion. Chemical Physics Letters. 669: 17-21.

Bar-Cohen, Y. (2006). Biomimetics--using nature to inspire human innovation. Bioinspiration & Biomimetics. 1: 1-12.

Barge, L. M., Cardoso, S. S. S., Cartwright, J. H. E., Cooper, G. J. T., Cronin, L., De Wit, A., Thomas, N. L. (2015). From chemical gardens to chemobrionics. Chemical Reviews. 115:8652-8703.

Bejan, A. (1995). Entropy Generation Minimization. New York: CRC Press. Bejan, A. (1997). Advanced Engineering Thermodynamics. New York: John Wiley & Sons.

Bejan, A., & Lorente, S. (2006). Constructal theory of generation of configuration in nature and engineering. Journal of Applied Physics. 100: 1-27.

Bejan, A., & Marden, J. H. (2006). Unifying constructal theory for scale effects in running, swimming and flying. Journal of Experimental Biology. 209: 238-248.

Belousov, B. P. (1959). A periodic reaction and its mechanism. Compilation of Abstracts on Radiation Medicine. 147: 1-3.

Beloussov, L. V. (2012). Morphogenesis as a macroscopic selforganizing process. BioSystems. 109: 262-279.

Bensemann, I. T., Fialkowski, M., & Grzybowski, B. A. (2005). Wet Stamping of Microscale Periodic Precipitation Patterns. Journal of Physical Chemistry. 7: 2774-2778. https://doi.org10.1021/jp047885b

Blagodatski, A., Sergeev, A., Kryuchkov, M., Lopatina, Y., & Katanaev, V. L. (2015). Diverse set of Turing nanopatterns coat corneae across insect lineages. Proceedings of the National Academy of Sciences of the United States of America. 112: 10750-10755.

Brachet, J., Denis, H., & Vitry, F. D. (1964). The effects of Actinomycin D. and Puromycin on morphogenesis in amphibian eggs and Acetabularia mediterranea. Developmental Biology. 9:398-434.

Callen, H. B. (1985). Thermodynamics and an Introduction to Thermostatistics (2nd ed.). New York: John Wiley & Sons.

Castets, V., Dulos, E., Boissonade, J., & De Kepper, P. (1990). Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Physical Review Letters. 64: 2953-2956.

Chou, H. H., Nguyen, A., Chortos, A., To, J. W., Lu, C., Mei, J., Bao, Z. (2015). A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nature Communications. 6: 1-10.

Clark, I. A., Daly, C. A., Devenport, W., Alexander, W. N., Peake, N., Jaworski, J. W., & Glegg, S. (2016). Bio-inspired canopies for the reduction of roughness noise. Journal of Sound and Vibration. 385: 33-54.

Coppens, M.O. (2012). A nature-inspired approach to reactor and catalysis engineering. Current Opinion in Chemical Engineering. 1: 281-289.

Coppens, M.-O., & Froment, G. F. (1996). Catalyst design accounting for the fractal surface morphology. The Chemical Engineering Journal and the Biochemical Engineering Journal. 64:69-76.

Davies, J. (2013). Mechanisms of Morphogenesis. Edinburgh: Academic Press Inc.

De Groot, S. R., & Mazur, P. (1984). Non-Equilibrium Thermodynamics.New York: Dover Publications.

Dewar, R. C. (2005). Maximum entropy production and the fluctuation theorem. J Phys A: Math Gen. 38: 371-381.

Eu, B. C. (2016). Kinetic Theory of Nonequilibrium Ensembles, Irreversible Thermodynamics, and Generalized Hydrodynamics (Vol. 2). Montreal: Springer.

George, J., & Varghese, G. (2002). Liesegang patterns:Estimation

of diffusion coefficient and a plausible justification for colloid explanation. Colloid and Polymer Science. 280:1131-1136.

Gierer, A., & Meinhardt, H. (1972). A theory of biological pattern formation. Kybernetik. 12: 30-39.

Goodwin, B. C., & Briere, C. (1994). Mechanics of the cytoskeleton and morphogenesis of acetabularia. International Review of Cytology. 150: 225-242.

Goodwin, B. C., & Cohen, M. H. (1969). A phase-shift model for the spatial and temporal organization of developing systems. Journal of Theoretical Biology. 25: 49-107. https://doi.org10.1016/S0022-5193(69)80017-2

Goodwin, B. C., & Pateromichelakis, S. (1979). The role of electrical fields, ions, and cortex in the morphogenesis of Acetabularia. Planta. 145: 427-435.

Goodwin, B. C., & Trainor, L. E. H. (1985). Tip and whorl morphogenesis in Acetabularia by calcium-regulated strain fields. Journal of Theoretical Biology. 117: 79-106. https://doi.org10.1016/S0022-5193(85)80165-X

Gray, P., & Scott, K. (1984). Autocatalytic in the Isothermal, Continous Stirred Tank Reactor Oscillations and Inestabilities. Chemical Engineering Science. 39: 1087-1097. https://doi.org10.1016/0009-2509(84)87017-7

Gray, P., & Scott, S. K. (1983). Autocatalytic reactions in the isothermal, continuous stirred tank reactor Isolas and other forms of multistability. Chemical Engineering Science. 39:1087-1097.

Grzybowski, B. A. (2009). Chemistry in Motion: Reaction–Diffusion Systems for Micro- and Nanotechnology.Chichester: John Wiley & Sons.

Guiu-Souto, J. (2014). Autoorganización de Estructuras de Turing en Presencia de Campos Externos. Universidad de Santiago de Compostela, Santiago de Compostela.

Guiu-Souto, J., Carballido-Landeira, J., & Muñuzuri, A. P. (2012). Characterizing topological transitions in a Turingpattern-forming reaction-diffusion system. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics. 85: 1-8. https://doi.org10.1103/PhysRevE.85.056205

Guiu-Souto, J., Escala, D. M., Carballido-Landeira, J., Muñuzuri, A. P., & Martín-Ortega, E. (2012). Viscous Fingering Instabilities in Reactive Miscible Media. Numerical Methods for Hyperbolic Equations. 409.

Haemmerling, J. (1963). Nucleo-Cytoplasmic Interactions in Acetabularia and other Cells. Annual Review of Plant Physiology. 14: 65-92.

Heisenberg, C., & Bellaiche, Y. (2013). Review Forces in Tissue Morphogenesis and Patterning. Cell. 153 (5): 948-962.

Helms, M., Vattam, S. S., & Goel, A. K. (2009). Biologically inspired design: process and products. Design Studies. 30: 606-622.

Henisch, H. (1991). Periodict Precipitation: A Microcomputer Analysis of Transport and Reaction Processes in Diffusion Media, with Software Development. Oxford: Pergamon Press.

Hoang, T., & Hwang, H. J. (2013). Turing instability in a general system. Nonlinear Analysis, Theory, Methods and Applications. 91: 93-113.

Howard, J., Grill, S. W., & Bois, J. S. (2011). Turing’s next steps: the mechanochemical basis of morphogenesis. Nature Reviews Molecular Cell Biology. 12: 392-398.

Hunding, A., Kauffman, S. A., & Goodwin, B. C. (1990). Drosophila segmentation: Supercomputer simulation of prepattern hierarchy. Journal of Theoretical Biology. 145:369-384.

Jiang, J., & Sakurai, K. (2016). Formation of Ultrathin LiesegangPatterns. Langmuir. 32: 9126-9134. https://doi.org10.1021/acs.langmuir.6b02148

Kjelstrup, S., & Bedeaux, D. (2008). Non-Equilibrium Thermodynamics of Heterogeneous Systems. Londres: World Scientific.

Lagzi, I. (2012). Controlling and engineering precipitation patterns. Langmuir. 28: 3350-3354. https://doi.org10.1021la2049025

Lebedeva, M. I., Vlachos, D. G., & Tsapatsis, M. (2004). Bifurcation analysis of Liesegang ring pattern formation. Physical Review Letters. 92: 88301.

Ledesma Durán, A. (2012). Patrones de turing en sistemas biológicos.Universidad Autónoma Metropolitana, México D. F.

Leduc, S. (2010). The Mechanism of Life. New York: Rebman Company. Retrieved from

Lengyel, I., & Epstein, I. R. (1992). A chemical approach to designing Turing patterns in reaction-diffusion systems. Proceedings of the National Academy of Sciences of the United States of America. 89: 3977-3979.

Lexa, D., & Holba, V. (1993). Periodic precipitation of silver chromate/dichromate in gelatin. Colloid and PolymerScience. 9: 884-890.

Liesegang, R. (1896). Ueber einige Eigenschaften von Gallerten. Naturwissenschaftliche Wochenschrift, 10: 353-362.

Lucia, U. (2012). Maximum or minimum entropy generation for open systems? Physica A: Statistical Mechanics and Its Applications, 391: 3392-3398. https://doi.org10.1016j.physa.2012.01.055

Magnanelli, E., Wilhelmsen, Ø., Acquarone, M., Folkow, L. P., & Kjelstrup, S. (2016). The Nasal Geometry of the Reindeer Gives Energy-Efficient Respiration. Journal of Non-Equilibrium Thermodynamics,

Maldonado, C. E. (2004). Ciencias de la complejidad: Ciencias de los cambios súbitos. Bogotá D. C.

McKeag, T. (2012). GreenBiz. Retrieved November 14, 2016, from birdwatching-made-japans-bullet-train-better

Müller, S. C., & Ross, J. (2003). Spatial structure formation in precipitation reactions. Journal of Physical Chemistry A. 107: 7997-8008.

Murray, J. D. (2003a). Mathematical Biology I: An introduction (3rd editio). Berlin: Springer-Verlag.

Murray, J. D. (2003b). Mathematical Biology II: Spatial models and biomedical applications (3rd editio). Berlin: Springer-Verlag.

Nagao, R., Epstein, I., Gonzalez, E. R., & Varela, H. (2008). Temperature (over) compensation in an oscillatory surface reaction. The Journal of Physical Chemistry A. 20: 4617-4624.

Nagao, R., Epstein, I. R., & Dolnik, M. (2013). Forcing of Turing Patterns in the Chlorine Dioxide − Iodine − Malonic Acid Reaction with Strong Visible Light. The Journal of Physical Chemistry. 117: 9120-9126. https:/

Nagao, R., & Varela, H. (2016). Turing patterns in chemical systems. Química Nova, 4: 474-485. https/dx.doi.org10.59350100-4042.20160026

Nakouzi, E., & Steinbock, O. (2016). Self-organization in precipitation reactions far from the equilibrium. Science Advances, 2 (8): e1601144–e1601144. https://doi.org10.1126sciadv.1601144

Needham, J. (1935). Chemical Embryology. Annuals Reviews of Biochemistry. 4: 449-469.

Nicolis, G., & Prigogine, I. (1977). Self-Organization in Non-Equilibrium Systems. New York: John Wiley & Sons.

Nogueira, P. A., Batista, B. C., Faria, R. B., & Varela, H. (2014). The effect of temperature on the dynamics of a homogeneous oscillatory system operated in batch and under flow. RSC Advances, 4: 30412-30421. https:/

Ohtsuka, Y., Seki, T., & Takeoka, Y. (2015). Thermally Tunable Hydrogels Displaying Angle-Independent Structural Colors. Angewandte Chemie, 127: 15588-15593. https://doi.org10.1002ange.201507503

Onsager, L. (1931). Reciprocal relations in irreversible processes I. Physical Review. 37: 405-426.

Pearson, J. E. (1993). Complex patterns in a simple system. Science (New York, N.Y.), 261: 189-92. https://doi.org10.1126science.261.5118.189

Peña Pellicer, B. (2002). Inestabilidades de Turing en Sistemas de Reacción-Difusión. Universidad de Navarra, Pamplona.

Prigogine, I. (1967). Thermodynamics of irreversible processes. Nueva York: John Wiley & Sons.

Pullela, S. R., Cristancho, D., He, P., Luo, D., Hall, K. R., & Cheng, Z. (2009). Temperature dependence of the Oregonator model for the Belousov-Zhabotinsky reaction. Physical Chemistry Chemical Physics : PCCP, 11: 4236–4243. https://doi.org10.1039b820464k

Reis, A. H. (2006). Constructal Theory: From Engineering to Physics, and How Flow Systems Develop Shape and Structure. Applied Mechanics Reviews, 59: 269. https://doi.org10.11151.2204075

Rod, V., & Vacek, V. (1986). Diffusion coefficients of potassium chromate and dichromate in water at 25°C. Collection of Czechoslovak Chemical Communications. 7: 1403-1406.

Rommelaere, J., & Hiernaux, J. (1975). Model for the positional differentiation of the cap in Acetabularia. BioSystems. 7:250-258.

Sandakhchiev, L. S., Puchkova, L. I., Pikalov, A. V., Khristolubova, N. B., & Kiseleva, E. V. (1972). Subcellular Localization of Morphogenetic Factors in Anucleate Acetabularia At the Stages of Genetic Information Transfer and Expression.

Biology and Radiobiology of Anucleate Systems. 297-320.

Satnoianu, R. A., Menzinger, M., & Maini, P. K. (2010). Turing instabilities in general systems. Journal of Mathematical Biology.

: 493-512.

Schwarzenberger, K., Köllner, T., Linde, H., Boeck, T., Odenbach, S., & Eckert, K. (2014). Pattern formation and mass transfer under stationary solutal Marangoni instability. Advances in Colloid and Interface Science. 206: 344-71. https://doi.org10.1016/j.cis.2013.10.003

Sel’kov, E. E. (1968). Self-Oscillations in Glycolysis 1. A Simple Kinetic Model. European Journal of Biochemistry. 4: 79-86.

Serna, H. (2016). Evaluación termodinámica de patrones morfogenéticos estacionarios en sistemas de reacción-difusión noisotérmicos. Universidad Nacional de Colombia, Medellín.

Serna, H., Muñuzuri, A. P., & Barragán, D. (2017). Thermodynamic and morphological characterization of Turing patterns in non-isothermal reaction–diffusion systems. Phys. Chem. Chem. Phys. 19: 14401-14411. https://doi.org10.1039C7CP00543A

Simakov, D. S. A., & Pérez-Mercader, J. (2013). Noise induced oscillations and coherence resonance in a generic model of the nonisothermal chemical oscillator. Scientific Reports. 3 (2404): 1-10.

Solomon, E. P., Berg, L. R., & Martin, D. W. (2013). Biología. México D. F.: Cengage Learning.

Strogatz, S. H. (2001). Nonlinear Dynamics and Chaos: With Applications To Physics, Biology, Chemistry, And Engineering. Westview Press.

Teyssier, J., Saenko, S. V., Van der Marel, D., & Milinkovitch, M. C. (2015). Photonic crystals cause active colour change in chameleons. Nature Communications. 6 (6368): 1-7.

Tropea, C., & Bleckmann, H. (2012). Nature-Inspired Fluid Mechanics. In Nature-Inspired Fluid Mechanics: Results of the DFG Priority Programme 1207 (p. 101). Springer Science & Bussines Media.

Turing, A. (1952). The Chemical Basis of Morphogenesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 237: 37-72.

Walish, J. J., Kang, Y., Mickiewicz, R. A., & Thomas, E. L. (2009). Bioinspired electrochemically tunable block copolymer full color pixels. Advanced Materials. 21: 3078-3081. https://doi.org10.1002/adma.200900067

Walliser, R. M., Boudoire, F., Orosz, E., Tóth, R., Braun, A., Constable, E. C., … Lagzi, I. (2015). Growth of nanoparticles and microparticles by controlled reactiondiffusion processes. Langmuir. 31: 828-1834.

Walton, B. M., & Bennet, A. F. (1993). Temperature-dependent color change in Kenyan chameleons. Physiological Zoology. 66: 270-287. 30163690

Werz, G. (1974). Fine-structural aspects of morphogenesis in Acetabularia. International Review of Cytology. 38: 319-367.

Xia, F., & Jiang, L. (2008). Bio-inspired, smart, multiscale interfacial materials. Advanced Materials. 20: 2842-2858.

Yeh, H., & Wills, G. B. (1970). Diffusion coefficient of sodium nitrate in aqeous solution at 25°C as a function of concentration from 0.1 to 1.0M. Journal of Chemical and Engineering. 1:187-189.

Zhabotinsky, A. M., & Zaikin, A. N. (1970). Concentration Wave Propagation in Two-dimensional Liquid-phase Selfoscillating System. Nature. 225: 535-537.