Terapia génica en enfermedades neurodegenerativas y demencia post infarto cerebral: perspectiva de traslación
PDF

Cómo citar

Gutiérrez-Vargas, J., & Cardona-Gómez, G. P. (2017). Terapia génica en enfermedades neurodegenerativas y demencia post infarto cerebral: perspectiva de traslación. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 41(158), 6–21. https://doi.org/10.18257/raccefyn.437

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

Las enfermedades cerebrovasculares se han convertido en un problema de salud mundial debido a su alta tasa de mortalidad y discapacidad. En Colombia constituyen la tercera causa de riesgo de muerte y en el mundo son la primera causa de discapacidad física y mental. Se han evaluado muchas estrategias terapéuticas en modelos experimentales y en ensayos clínicos sin buenos resultados. Algunas de las falencias de los estudios sobre tales estrategias terapéuticas son el reducido tiempo de intervención (menos de cuatro horas y media), así como el poco tiempo de protección y la falta de seguimiento de la terapia, lo cual genera secuelas a largo plazo en los pacientes. La terapia génica ha demostrado ser una herramienta de gran utilidad para el tratamiento de las enfermedades neurodegenerativas; sin embargo, en el caso específico de la isquemia cerebral hay pocos estudios experimentales. En nuestras investigaciones hemos constatado el potencial de la terapia génica basada en el ARN de interferencia para prevenir y revertir la neurodegeneración y el deterioro cognitivo después de un infarto cerebral, aunque todavía deben sortearse algunas dificultades terapéuticas inherentes al sistema nervioso cerebral, así como concertar los intereses de los diversos sectores involucrados: el Gobierno, las empresas y el sector científico y académico, con el fin de incentivar la inversión y facilitar la aplicación en otras partes del país de las terapias promisorias propuestas en nuestra región para disminuir las secuelas de enfermedades crónicas no transmisibles, entre ellas la incapacidad física y mental después de un infarto cerebral. © 2017. Acad. Colomb. Cienc. Ex. Fis. Nat.

https://doi.org/10.18257/raccefyn.437
PDF

Citas

ADI/BUPA Inform. 2013. La demencia en América: EL costo y la prevalencia del Alzheimer y otros tipos de demencia.

Aguzzi, A., O’Connor, T. 2010. Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov. 9: 237-48.

Al-Jamal, K.T., Gherardini, L., Bardi, G., Nunes, A., Guo, C., Bussy, C., Herrero, M.A., Bianco, A., Prato, M., Kostarelos, K., Pizzorusso, T. 2011. Functional motor recovery from brain ischemic insult by carbon nanotubemediated siRNA silencing. Proc Natl Acad Sci U S A. 108: 10952-7.

Alvira, D., Ferrer, I., Gutierrez-Cuesta, J., Garcia-Castro, B., Pallàs, M., Camins, A. 2008. Activation of the calpain/cdk5/p25 pathway in the girus cinguli in Parkinson’s disease. Parkinsonism & related disorders. 14: 309-13.

Amlie-Lefond, C., Chan, A.K., Kirton, A., DeVeber, G., Hovinga, C.A., Ichord, R., Stephens, D., Zaidat, O.O. 2009. Thrombolysis in acute childhood stroke: design and challenges of the thrombolysis in pediatric stroke clinical trial. Neuroepidemiology. 32: 279-86.

Amin, N.D., Albers, W., Pant, H.C. 2002. Cyclin-dependent kinase 5 (cdk5) activation requires interaction with three domains of p35. J Neuros Res. 67: 354-62.

Angelo, M., F. Plattner, Giese, K.P. 2006. Cyclin-dependent kinase 5 in synaptic plasticity, learning and memory. J Neurochem. 99: 353-70.

Asada, A., Yamamoto, N., Gohda, M., Saito, T., Hayashi, N., Hisanaga, S. 2008. Myristoylation of p39 and p35 is a determinant of cytoplasmic or nuclear localization of active cyclin-dependent kinase 5 complexes. J Neurochem. 106:1325-36.

Assarzadegan, F., Tabesh, H., Shoghli,. A, Ghafoori Yazdi M., Tabesh, H., Daneshpajooh, P., Yaseri, M. 2015. Relation of Stroke Risk Factors with Specific Stroke Subtypes and Territories. Iran J Public Health. 44:1387-1394.

Brainin, M., Tuomilehto, J., Heiss, W.D., Bornstein, N.M., Bath, P.M., Teuschl, Y., Richard, E., Guekht, A., Quinn, T. 2015. Post-stroke cognitive decline: an update and perspectives for clinical research. Eur J Neurol. 22: 229-38.

Becerra-Calixto, A., Cardona-Gómez, G.P. 2016. Neuroprotection Induced by Transplanted CDK5 Knockdown Astrocytes in Global Cerebral Ischemic Rats. Mol Neurobiol.

Bejot, Y., Benatru, I., Rouaud, O., Fromont, A., Besancenot, J.P., Moreau, T., Giroud, M. 2007. Epidemiology of stroke in Europe: geographic and environmental differences. J Neurol Sci. 262: 85-88.

Bianchi, M.E., Manfredi, A.A. 2007. High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol Rev. 220: 35-46.

Binukumar, B.K., Shukla, V., Amin, N.D., Bhaskar, M., Skuntz, S., Steiner, J., Winkler, D., Pelech, S.L., Pant, H.C. 2015. Analysis of the Inhibitory Elements in the p5 Peptide Fragment of the CDK5 Activator, p35, CDKR1 Protein. J Alzheimers Dis. 48: 1009-17.

Binukumar, B.K., Shukla V, Amin ND, Grant P, Bhaskar M, Skuntz S, Steiner J, Pant HC. 2015. Peptide (TFP5/TP5), derived from Cdk5 activator P35, provides neuroprotection in the MPTP model of Parkinson’s disease. Mol Biol Cell. 26: 4478-4491.

Bortolozzi, A., Castañé, A., Semakova, J., Santana, N., Alvarado, G., Cortés, R., Ferrés-Coy, A., Fernández, G., Carmona, M.C., Toth, M., Perales, J.C., Montefeltro, A., Artigas, F. 2012. Selective siRNA-mediated suppression of 5-HT1A autoreceptors evokes strong anti-depressantlike effects. Mol Psychiatry. 17: 612-23.

Boudreau, R.L., Davidson, B.L. 2010. RNAi therapeutics for CNS disorders. Brain Res. 1338: 112-21.

Boudreau, R.L., Rodriguez-Lebron, E., Davidson, B.L. 2011. RNAi medicine for the brain: progresses and challenges. Hum Mol Genet. 20:R21-7.

Camins, A., Verdaguer, E., Folch, J., Pallàs, M. 2006. Involvement of calpain activation in neurodegenerative processes. CNS drug reviews. 2006. 12: 135-148.

Campbell, M., Hanrahan, F., Gobbo, O.L., Kelly, M.E., Kiang, A.S., Humphries, M.M., Nguyen, A.T., Ozaki, E., Keaney, J., Blau, C.W., Kerskens, C.M., Cahalan, S.D., Callanan, J.J., Wallace, E., Grant, G.. A, Doherty, C.P., Humphries, P. 2012. Targeted suppression of claudin-5 decreases cerebral oedema and improves cognitive outcome following traumatic brain injury. Nat Commun. 3: 849.

Cardona-Gómez, G.P. & Lopera, F. 2016. Dementia, preclinical studies and its potential for translational medicine in South America. Frontiers in Aging Neurosci. 8: 304.

Castillo J, Alvarez-Sabin J, Dávalos A, Diez-Tejedor E, Lizasoain I, Martínez-Vila E, Vivancos J, Zarranz JJ. 2003 [Consensus review. Pharmacological neuroprotection in cerebral ischemia: is it still a therapeutic option?].Neurologia. 18: 368-84.

Castro-Alvarez, J.F., Gutierrez-Vargas, J., Darnaudéry, M., Cardona-Gómez, G.P. 2011. ROCK inhibition prevents tau hyperphosphorylation and p25/CDK5 increase after global cerebral ischemia. Behav Neurosci. 125:465-72.

Castro-Alvarez, J.F., Uribe-Arias, S.A., Kosik, K.S., Cardona-Gómez, G.P. 2014a. Long- and short-term CDK5 knockdown prevents spatial memory dysfunction and tau pathology of triple transgenic Alzheimer’s mice. Front Aging Neurosci. 6: 243.

Castro-Alvarez, J.F., Uribe-Arias, S.A., Cardona-Gómez, G.P. 2014b. Cyclin-dependent kinase 5, a node protein in diminished tauopathy: a systems biology approach. Front Aging Neurosci. 6: 232.

Castro-Alvarez, J.F., A. Uribe-Arias, S.A., Cardona-Gomez, G.P. 2015. Cyclin-Dependent kinase 5 targeting prevents beta-Amyloid aggregation involving glycogen synthase kinase 3beta and phosphatases. J Neurosci Res. 93:1258-66.

CDC. 2008. http://www.cdc.gov/dhdsp/atlas/heart_stroke_atlas. Chavez JC, Hurko O, Barone FC, Feuerstein GZ. 2009 Pharmacologic interventions for stroke: looking beyond the thrombolysis time window into the penumbra with biomarkers, not a stopwatch. Stroke. 40: e558-63.

Chen, C., Hu, Q., Yan, J., Yang, X., Shi, X., Lei, J., Chen, L., Huang, H., Han, J., Zhang, J.H., Zhou, C. 2009. Early inhibition of HIF-1alpha with small interfering RNA reduces ischemic-reperfused brain injury in rats. Neurobiol Dis.33: 509-17.

Cheng, Y.D., Al-Khoury, L., Zivin, J.A. 2004. Neuroprotection for ischemic stroke: two decades of success and failure. NeuroRx. 1: 36-45.

CLINIGENE. European Network for the Advancement of Clinical Gene Transfer and Therapy. Available from: http://www.clinigene.eu/.

Choi, D.W., Rothman, S.M. 1990. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci. 13: 171-182.

Danielyan, L., Klein, R., Hanson, L.R., Buadze, M., Schwab, M,. Gleiter, C.H., Frey, W.H. 2010. Protective effects of intranasal losartan in the APP/PS1 transgenic mouse model of Alzheimer disease. Rejuvenation Res. 13:195-201.

Demchuk, A.M., Buchan, A.M. 2000. Predictors of stroke outcome. Neurol Clin. 2000. 18: 455-73.

Dirnagl, U., Ladecola, C., Moskowitz, M.A. 1999. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci.22: 391-397.

Dobkin, B.H., Dorsch, A. 2013. New evidence for therapies in stroke rehabilitation. Curr Atheroscler Rep. 15: 331.

Durukan, A.,Tatlisumak, T. 2007. Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol Biochem Behav. 87: 179-197.

Drucker, E., Krapfenbauer, K. 2013. Pitfalls and limitations in translation from biomarker discovery to clinical utility in predictive and personalized medicine. The EPMA journal.4: 1-10.

Fillat, C. 2004. Perspectivas actuales de la terapia génica. BSCP Can Ped. 28: 203-207.

Fischer, A., Sananbenesi, F., Pang, P.T., Lu, B., Tsai, L.H. 2005. Opposing roles of transient and prolonged expression of p25 in synaptic plasticity and hippocampus-dependent memory. Neuron. 48: 825-38.

Fischer, P.M. 2001. Recent advances and new directions in the discovery and development of cyclin-dependent kinase inhibitors. Curr Opin Drug Discov Devel. 4: 623-34.

Fukuda A.M., Badaut, J. 2013. siRNA Treatment: “A Swordin-the-Stone” for Acute Brain Injuries. Genes (Basel). 4:435-56.

Gemmell, E., Bosomworth, H., Allan, L., Hall, R., Khundakar, A., Oakley, A.E., Deramecourt, V., Polvikoski, T.M.,O’Brien, J.T., Kalaria, R.N. 2012. Hippocampal neuronal atrophy and cognitive function in delayed poststroke and aging-related dementias. Stroke. 43: 808-14.

Gemmell, E., Tam, E., Allan, L., Hall, R., Khundakar, A., Oakley, A.E., Thomas, A., Deramecourt, V., Kalaria, R.N. 2014. Neuron volumes in hippocampal subfields in delayed poststroke and aging-related dementias. J Neuropathol Exp Neurol.73: 305-311.

Glicksman, M.A., Cuny GD, Liu M, Dobson B, Auerbach K, Stein RL, Kosik KS. 2007. New approaches to the discovery of cdk5 inhibitors. Curr Alzheimer Res. 4: 547-9.

Goldstein, L.B., Bushnell, C.D., Adams, R.J., Appel, L.J., Braun, L.T., Chaturvedi, S., Creager, M.A., Culebras, A., Eckel, R.H., Hart, R.G., Hinchey, J.A., Howard, V.J., Jauch, E.C., Levine, S.R., Meschia, J.F, Moore, W.S., Nixon, J.V., Pearson, T.A., American Heart Association Stroke Council., Council on Cardiovascular Nursing., Council on Epidemiology and Prevention., Council for High Blood Pressure Research., Councilon Peripheral Vascular Disease., and Interdisciplinary Council on Quality of Care and Outcomes Research. 2011. Guidelines for the primary prevention of stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 42:517-584.

Grimm, D., Kay, M.A. 2007. RNAi and gene therapy: a mutual attraction.Hematology Am Soc Hematol Educ Program. 473-81.

Gutiérrez-Vargas, J.A., Múnera, A., Cardona-Gómez, G.P. 2015. CDK5 knockdown prevents hippocampal degeneration and cognitive dysfunction produced by cerebral ischemia. J Cereb Blood Flow Metab. 35: 1937-49.

Gutiérrez-Vargas, J.A., Moreno, H., Cardona-Gómez, G.P. 2016 Targeting CDK5 post-stroke provides long-term neuroprotection and rescues synaptic plasticity. J Cereb Blood Flow Metab. DOI: 10.1177/0271678X16662476

Gomez, D., Martinez, J.A., Hanson, L.R., Frey, W.H. 2nd, Toth, C.C. 2012. Intranasal treatment of neurodegenerative diseases and stroke. Front Biosci (Schol Ed). 4: 74-89.

Guan, J.S., Su SC, Gao J, Joseph N, Xie Z, Zhou Y, Durak O, Zhang L, Zhu JJ, Clauser KR, Carr SA, Tsai LH. 2011. Cdk5 is required for memory function and hippocampal plasticity via the cAMP signaling pathway. PLoS One, 2011. 6: e25735.

Halliday, G.M., McCann, H. 2010. The progression of pathology in Parkinson’s disease. Ann N Y Acad Sci. 1184: 188-195.

Hawasli, A.H., Benavides, D.R., Nguyen, C., Kansy, J.W., Hayashi, K., Chambon, P., Greengard, P., Powell, C.M., Cooper, D.C., Bibb, J.A. 2007. Cyclin-dependent kinase 5 governs learning and synaptic plasticity via control of NMDAR degradation. Nat Neurosci. 10: 880-886.

Horn AI, F.S., Carvalho, S.M.R., Silvado, R.A.B., Babosa, P.M.K., Junior, A.D., Atallah, N.A., Fukujima, M.M., Prado, G.F. 2003. Cinesioterapia previne ombro doloroso em pacientes hemiplégicos/paréticos na fase sub-aguda do acidente vascular encefálico. Arq. Neuropsiquiatria. 61:768-771.

Juliano, R.L., Dixit, V.R., Kang, H., Kim, T.Y., Miyamoto, Y., Xu, D. 2005. Epigenetic manipulation of gene expression:a tool kit for cell biologists. J Cell Biol. 169: 847-857.

Kay, M.A., Glorioso, J.C., Naldini, L. 2001. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med. 7:33-40.

Kim, H.W., Cho, K.J., Lee, S.K., Kim, G.W. 2011. Apoptosis signal-regulating kinase 1 (Ask1) targeted small interfering RNA on ischemic neuronal cell death. Brain Res. 1412:73-78.

Kim, I.D., Lim, C.M., Kim, J.B., Nam, H.Y., Nam, K., Kim, S.W., Park, J.S., Lee, J.K. 2010. Neuroprotection by biodegradable PAMAM ester (e-PAM-)-mediated HMGB1siRNA delivery in primary cortical cultures and in the postischemic brain. J Control Release. 142: 422-30.

Kim, I.D., Shin, J.H., Kim, S.W., Choi, S., Ahn, J., Han, P.L., Park, J.S., Lee, J.K. 2012. Intranasal delivery of HMGB1 siRNA confers target gene knockdown and robust neuroprotection in the postischemic brain. Mol Ther. 20: 829-39.

Kim, J.B., Sig Choi, J., Yu, Y.M., Nam, K., Piao, C.S., Kim, S.W., Lee, M.H., Han, P.L., Park, J.S., Lee, J.K. 2006. HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. J Neurosci. 26:6413-21.

Kimura, T., Ishiguro, K., Hisanaga, S. 2014. Physiological and pathological phosphorylation of tau by Cdk5. Front Mol Neurosci. 7:65.

Ko, J., Humbert S, Bronson RT, Takahashi S, Kulkarni AB, Li E, Tsai LH. 2001. p35 and p39 are essential for cyclindependent kinase 5 function during neurodevelopment. J Neurosci. 21: 6758-6771.

Kusakawa, G., Saito, T., Onuki, R., Ishiguro, K., Kishimoto, T., Hisanaga, S. 2000. Calpain-dependent proteolytic cleavage of the p35 cyclin-dependent kinase 5 activator to p25. J Biol Chem. 275: 17166-17172.

Lavados, P.M., Hennis, A.J., Fernandes, J.G., Medina, M.T., Legetic, B., Hoppe, A., Sacks, C., Jadue, L., Salinas, R. 2007. Stroke epidemiology, prevention, and management strategies at a regional level: Latin America and the Caribbean. Lancet Neurol. 6:362-72.

Lecca, D., Trincavelli, M.L., Gelosa, P., Sironi, L., Ciana, P., Fumagalli, M., Villa, G., Verderio, C., Grumelli, C., Guerrini, U., Tremoli, E., Rosa, P., Cuboni, S., Martini, C., Buffo, A., Cimino, M., Abbracchio, M.P. 2008. The recently identified P2Y-like receptor GPR17 is a sensor of brain damage and a new target for brain repair. PLoS One.3: e3579.

Lo, E.H. 2008. A new penumbra: transitioning from injury into repair after stroke. Nat Med. 14:497-500.

Lopes, J.P., Agostinho, P. 2011. Cdk5: multitasking between physiological and pathological conditions. Prog Neurobiol. 94:49-63.

Markgraf, C.G., Velayo, N.L., Johnson, M.P., McCarty, D.R., Medhi, S., Koehl, J.R., Chmielewski, P.A., Linnik, M.D. 1998. Six-hour window of opportunity for calpain inhibition in focal cerebral ischemia in rats. Stroke. 29:152-8.

Menn, B., Bach, S., Blevins, T.L., Campbell M, Meijer L, Timsit S. 2010. Delayed treatment with systemic (S)-roscovitine provides neuroprotection and inhibits in vivo CDK5 activity increase in animal stroke models. PLoS One. 5: e12117.

Mitsios, N., Pennucci R, Krupinski J, Sanfeliu C, Gaffney J, Kumar P, Kumar S, Juan-Babot O, Slevin M. 2007. Expression of cyclin-dependent kinase 5 mRNA and protein in the human brain following acute ischemic stroke. Brain pathology. 17:11-23.

Moskowitz, M.A., E.H. Lo, and C. Iadecola. 2010. The science of stroke: mechanisms in search of treatments. Neuron. 67:181-198.

Moustafa, R.R. and J.C. Baron. 2008. Pathophysiology of ischaemic stroke: insights from imaging, and implications for therapy and drug discovery. Br J Pharmacol. 153 Suppl 1: S44-54.

Nys, G.M., van Zandvoort MJ, de Kort PL, Jansen BP, Kappelle LJ, de Haan EH. 2005. Restrictions of the Mini-Mental State Examination in acute stroke. Arch Clin Neuropsychol. 20: 623-9.

OMS. 2016. Discapacidades.

Ohshima, T., Ogura H, Tomizawa K, Hayashi K, Suzuki H, Saito T, Kamei H, Nishi A, Bibb JA, Hisanaga S, Matsui H, Mikoshiba K. 2005. Impairment of hippocampal longterm depression and defective spatial learning and memory in p35 mice. J Neurochem. 94: 917-925.

Patrick, G.N., Zhou P, Kwon YT, Howley PM, Tsai LH. 1998. p35, the neuronal-specific activator of cyclin-dependent kinase 5 (Cdk5) is degraded by the ubiquitin-proteasome pathway. J Biol Chem. 273: 24057-2464.

Patrick, G.N., Zukerberg, L., Nikolic, M., De la Monte, S., Dikkes, P., Tsai, L.H. 1999. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature. 402: 615-622.

Parker, J.S., Roe, S.M., Barford, D. 2004. Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity. EMBO J. 23: 4727-37.

Piedrahita, D., Hernández, I., López-Tobón, A., Fedorov, D., Obara, B., Manjunath, B.S., Boudreau, R.L., Davidson, B., Laferla, F., Gallego-Gómez, J.C., Kosik, K.S., Cardona-Gómez, G.P. 2010. Silencing of CDK5 reduces neurofibrillary tangles in transgenic Alzheimer’s mice. J Neurosci. 30:13966-13976.

Pluta, R., Jolkkonen, J., Cuzzocrea, S., Pedata, F., Cechetto, D., Popa-Wagner, A. 2011. Cognitive impairment with vascular impairment and degeneration. Cognitive impairment with vascular impairment and degeneration. Curr Neurovasc Res. 8: 342-350.

Posada-Duque, R.A., Barreto, G.E., Cardona-Gomez, G.P. 2014. Protection after stroke: cellular effectors of neurovascular unit integrity. Front Cell Neurosci. 8:231.

Posada-Duque, R.A., López-Tobón, A., Piedrahita, D., González-Billault, C., Cardona-Gomez, G.P. 2015. p35 and Rac1 underlie the neuroprotection and cognitive improvement induced by CDK5 silencing. J Neurochem. 134:354-370.

Posada-Duque, R.A., Ramirez, O., Härtel, S., Inestrosa, N.C., Bodaleo, F., González-Billault, C., Kirkwood, A., Cardona-Gómez, G.P. 2017. CDK5 downregulation enhances synaptic plasticity. Cell Mol Life Sci. 74: 153-172.

Price, M., Badaut, J., Thevenet, J., Hirt, L. 2010. Activation of c-Jun in the nuclei of neurons of the CA-1 in thrombin preconditioning occurs via PAR-1. J Neurosci Res. 88:1338-1347.

Razzak, J., Kellermann, A. 2002. Emergency medical care in developing countries is it worthwhile? Bulletin of the World Health Organization. 80:900-905.

Renner, D.B., Frey, 2nd, and L.R. Hanson. 2012. Intranasal delivery of siRNA to the olfactory bulbs of mice via the olfactory nerve pathway. Neurosci Lett. 513: 193-7.

Sapru, M.K., Yates, J.W., Hogan, S., Jiang, L., Halter, J., Bohn, M.C. 2006. Silencing of human alpha-synuclein in vitro and in rat brain using lentiviral-mediated RNAi. Exp Neurol. 198: 382-90.

Slevin M, Krupinski J. 2009. Cyclin-dependent kinase-5 targeting for ischaemic stroke. Curr Opin Pharmacol. 9: 119-24.

Sun, J.H., Tan, L., Yu, J.T. 2014. Post-stroke cognitive impairment:epidemiology, mechanisms and management.Ann Transl Med. 2:80.

Szabo, K., Szabo, K., Förster, A., Jäger, T., Kern, R., Griebe, M., Hennerici, M.G., Gass, A. 2009. Hippocampal lesion patterns in acute posterior cerebral artery stroke: clinical and MRI findings. Stroke. 40: 2042-2045.

Tan, X., Chen, Y., Li, J., Li, X., Miao, Z., Xin, N., Zhu, J., Ge, W., Feng, Y., Xu, X. 2015. The inhibition of Cdk5 activity after hypoxia/ischemia injury reduces infarct size and promotes functional recovery in neonatal rats. Neuroscience. 290:552-60.

Thorne, R.G., Hanson, L.R., Ross, T.M., Tung, D., Frey, W.H. 2nd. 2008. Delivery of interferon-beta to the monkey nervous system following intranasal administration. Neuroscience. 152: 785-97.

Thorne, R.G., Pronk, G.J., Padmanabhan, V., Frey, W.H. 2nd. 2004. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 127:481-496.

Thorne, R.G., Frey, W.H. 2nd. 2001. Delivery of neurotrophic factors to the central nervous system: pharmacokinetic considerations. Clin Pharmacokinet. 40: 907-946.

Tsai, L.H., Takahashi, T., Caviness, V.S. Jr, Harlow, E. 1993. Activity and expression pattern of cyclin-dependent kinase 5 in the embryonic mouse nervous system. Development. 119: 1029-40.

Uribe-Arias, A., Posada-Duque, R.A., González-Billault, C., Villegas, A., Lopera, F., Cardona-Gómez, G.P. 2016. p120-catenin is necessary for neuroprotection induced by CDK5 silencing in models of Alzheimer’s disease. J Neurochem. 138: 624-39.

Vautrin, J., Barker, J.L. 2003. Presynaptic quantal plasticity: Katz’s original hypothesis revisited. Synapse. 47: 184-199.

Wen, Y., Yang, S.H., Liu, R., Perez, E.J., Brun-Zinkernagel, A.M., Koulen, P., Simpkins, J.W. 2007. Cdk5 is involved in NFT-like tauopathy induced by transient cerebral ischemia in female rats. Biochimica et biophysica acta. 1772: 473-483.

WHO. 2015. http://www.who.int/mediacentre/factsheets/fs362/en/. Won, S.J., Kim, D.Y., Gwag, B.J. 2002. Cellular and molecular pathways of ischemic neuronal death. J Biochem Mol Biol. 35: 67-86.

Zhang, S., Edelmann, L., Liu, J., Crandall, J.E., Morabito, M.A. 2008. Cdk5 regulates the phosphorylation of tyrosine 1472 NR2B and the surface expression of NMDA receptors. J Neurosci. 28: 415-424.

Zhang, L., Z.G. Zhang, Chopp, M. 2012 The neurovascular unit and combination treatment strategies for stroke. Trends Pharmacol Sci. 33:415-22.

Zhao, B., Zhao, C.Z., Zhang, X.Y., Huang, X.Q., Shi, W.Z., Fang, S.H., Lu, Y.B., Zhang, W.P., Xia, Q. 2012. The new P2Y-like receptor G protein-coupled receptor 17 mediates acute neuronal injury and late microgliosis after focal cerebral ischemia in rats. Neuroscience. 202: 42-57.

Zheng, Y.Q., Liu, J.X., Li, X.Z., Xu, L., Xu, Y.G. 2009. RNA interference-mediated downregulation of Beclin1 attenuates cerebral ischemic injury in rats. Acta Pharmacol Sin. 30: 919-27.

Zheng, M., Leung, C.L., Liem, R.K. 1998. Region-specific expression of cyclin-dependent kinase 5 (cdk5) and its activators, p35 and p39, in the developing and adult rat central nervous system. J Neurobiol. 35: 141-159.

Declaración de originalidad y cesión de derechos de autor

Los autores declaran:

  1. Los datos y materiales de referencia publicados han sido debidamente identificados con sus respectivos créditos y han sido incluidos en las notas bibliográficas y citas que así se han identificado y que de ser requerido, cuento con todas las liberaciones y permisos de cualquier material con derechos de autor.
  2. Todo el material presentado está libre de derechos de autor y acepto plena responsabilidad legal por cualquier reclamo legal relacionado con la propiedad intelectual con derechos de autor, exonerando completamente de responsabilidad a la Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.
  3. Este trabajo es inédito y no será enviado a ninguna otra revista mientras se espera la decisión editorial de esta revista. Declaro que no hay ningún conflicto de intereses en este manuscrito.
  4. En caso de publicación de este artículo, todos los derechos de autor son transferidos a la Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, por lo que no puede ser reproducido de ninguna forma sin el permiso expreso de la misma.
  5. Mediante este documento, si el artículo es aceptado para publicación por la Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, la Revista asume el derecho de editar y publicar los artículos en índices o bases de datos nacionales e internacionales para académicos y uso científico en formato papel, electrónico, CD-ROM, internet ya sea del texto completo o cualquier otra forma conocida conocida o por conocer y no comercial, respetando los derechos de los autores.

Transferencia de derechos de autor

En caso de que el artículo sea aprobado para su publicación, el autor principal en representación de sí mismo y sus coautores o el autor principal y sus coautores deberán ceder los derechos de autor del artículo correspondiente a la Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, excepto en los siguientes casos:

Los autores y coautores se reservan el derecho de revisar, adaptar, preparar trabajos derivados, presentaciones orales y distribución a algunos colegas de reimpresiones de su propio trabajo publicado, si se otorga el crédito correspondiente a la Revista de la Academia Colombiana de Ciencias. Exactas, Físicas y Naturales. También está permitido publicar el título de la obra, resumen, tablas y figuras de la obra en los sitios web correspondientes de los autores o sus empleadores, dando también crédito a la Revista.

Si el trabajo se ha realizado bajo contrato, el empleador del autor tiene el derecho de revisar, adaptar, preparar trabajos derivados, reproducir o distribuir en papel el trabajo publicado, de manera segura y para uso exclusivo de sus empleados.

Si la Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales fuera solicitada por un tercero para el uso, impresión o publicación específica de artículos ya publicados, la Revista debe obtener el permiso expreso del autor y coautores de la trabajo o del empleador excepto para uso en aulas, bibliotecas o reimpreso en un trabajo colectivo. La Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales se reserva el posible uso en su portada de figuras entregadas con los manuscritos.

La Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales no puede reclamar ningún otro derecho que no sea el de autor.