Imanes permanentes: características, aplicaciones y futuro
PDF

Archivos suplementarios

Información suplementaria

Cómo citar

Pérez- Alcázar, G. A. (2016). Imanes permanentes: características, aplicaciones y futuro. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 40(155), 221–233. https://doi.org/10.18257/raccefyn.361

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

Actualmente uno de los materiales magnéticos más utilizados en aplicaciones tecnológicas, son los imanes permanentes (IP) o materiales magnéticamente duros. En vista de su importancia, presento en este trabajo una revisión del estado del arte sobre estos materiales, partiendo de una revisión teórica de los conceptos y características más importantes que deben tenerse en cuenta para entender cómo funcionan; pasando por exponer y discutir los diferentes tipos de materiales que se utilizan en su fabricación y sus aplicaciones industriales relevantes; y finalmente discutir las rutas investigativas actuales y futuras en estos materiales, con el fin de obtener materiales para IP con mejores rendimientos y con menores costos. © 2016. Acad. Colomb. Cienc. Ex. Fis. Nat. Todos los derechos reservados.
https://doi.org/10.18257/raccefyn.361
PDF

Citas

Cullity B.D. & Graham C.D. 2009. “Introduction to magnetic materials”, Second Edition, a John Wiley & Sons Publishing.

O´Handley R.C., 2000. “Modern magnetic materials: Principles and Applications”, John Wiley & Sons Publishing.

Jimenez-Villacorta F. & Lewis L.H. 2014. “Advanced Permanent Magnetic Materials” en Nanomagnetism, Edition: http://www.onecentralpress.com/nanomagnetism/, Chapter: 7, Publisher: OCP Publishing Group. USGS Mineral resources program, http://minerals.usgs.gov/.

Lewis L.H. & Jiménez-Villacorta F. 2011. “Perspectives on Permanent Magnetic Materials for Energy Conversion and Power Generation”, Metal. Mat. Trans. A, 44A, S1-S20. (https://www.google.com.co/search?ciclos+de+histéresis).

Hadjipanayis G. 2008. “Novel Materials for High Energy and Power Density”, University of Delaware, Energy Institute Symposium, March 17, Newark, DE.

Stoner E.C. 1945. “The demagnetizing factor for ellipsoids”, Phil. Mag., 36: 803-821.

Osborn, J. A. 1945. “Demagnetizing Factors of the General Ellipsoid”, Phys. Rev., 67: 351-357.

Akulov, N. 1936. “Zur Quantentheorie der Temperaturabhangigkeit der Magnetisie-rungskurve”, Z. Phys. 100: 197-202.

De Vos K.J., 1969. “Magnetism and Metallurgy”, Vol. 2, Academic Press.

McCurrie R.A. 1982. “Ferromagnetic Materials”, Vol. 3, E. P. Wohlfarth, ed., North Holland, Amsterdam, p.107.

Smith J. & Wijn H.P.J. 1959. “Ferrites”, Wiley, New York. den Broder F.J.A. & Buschow K.H.J. 1977, “Coercive force and stability of SmCo5 and GdCo5”, J. Less-Common Met. 29: 65-71.

Das B.N. & Koon N.C. 1983, “Correlation between microstructure and coercivity of amorphous (Fe0.82B0.18) 0.90Tb0.05La0.05 alloy ribbons”, Met. Trans. 14A: 953-961.

Croat J.J. 1981, “Observation of large room-temperature coercivity in melt-spun Nd0.4Fe0.6”, Appl. Phys. Lett. 39:357-358; 1981, “Crystallization and magnetic properties of melt-spun neodymium-iron alloys”, J. Magn. Magn. Mater. 24: 125-131.

Hadjipanayis G., Hazelton R.C., & Lawless K.R. 1983, “New iron-rare-earth based permanent magnet materials”, Appl. Phys. Lett. 43: 797-798; 1984, “Cobalt-free permanent magnet materials based on iron-rare-earth alloys (invited)”, J. Appl. Phys. 55: 2073-2077.

Sagawa M., Fujimura S., Togawa M., & Matsura Y., 1984 “New material for permanent magnets on a base of Nd and Fe (invited)”, J. Appl. Phys. 55: 2083-2087.

Croat J.J., Herbst J.F., Lee R.W., & Pinlterton F.E. 1984, “Pr-Fe and Nd-Fe-based materials: A new class of highperformance permanent magnets (invited)”, J. Appl. Phys. 55: 2078-2082.

Herbst J.F., 1991. “R2Fe14B materials: Intrinsic properties and technological aspects”, Rev. Mod. Phys. 63: 819-898.

Kim T.K. & Takahashi M. 1972. “New Magnetic Material Having Ultrahigh Magnetic Moment”, Appl. Phys. Lett., 20: 492-494.

Takahashi H., Mitsuoka K., Komuro M., & Sugita Y. 1993. J. Appl. Phys., 73: 6060-6062.

Conference on Critical Materials for a Clean Energy Future, October 4-5, 2011, Workshops hosted by the U.S. Department of Energy, Washington, DC, http://energy.gov/sites/prod/files/DOE_CMS2011_FINAL_Full.pdf.

McCurrie R.A., Rickman J., Dunk P., & Hawkridge D.G. 1978. “Dependence of the permanent magnet properties of Mn55Al45 on particle size”, IEEE Trans. Magn. 14: 682-684.

Fazakas E., Varga L.K., & Mazaleyrat F. 2007. “Preparation of nanocrystalline Mn–Al–C magnets by melt spinning and subsequent heat treatments”, J. Alloy. Compd. 434-435:611-613.

Hoydick D.P., Palmiere E.J., & Soffa W.A. 1997. “Microstructural development in MnAl-base permanent magnet materials: New perspectives”, J. Appl. Phys. 81: 5624-5626.

Zeng Q., Baker I., Cui J.B., & Yan Z.C. 2007. “Structural and magnetic properties of nanostructured Mn–Al–C magnetic materials”, J. Magn. Magn. Mater. 308: 214-216.

Zeng Q., Baker I., & Yan Z. 2006. “Nanostructured Mn–Al permanent magnets produced by mechanical milling”, J. Appl. Phys. 99: 08E902.

Harris V.G., Chen Y., Yang A., Yoon S., Chen Z., Geiler A.L., Gao J., Chinnasamy C.N., Lewis L.H., Vittoria C., Carpenter E.E., Carroll K.J., Goswami R., Willard M.A., Kurihara L., Gjoka M., & Kalogirou O. 2010. “High coercivity cobalt carbide nanoparticles processed via polyol reaction: a new permanent magnet material”, J. Phys. D: Appl. Phys. 43: 165003.

Pérez Alcázar G.A. & Galvão da Silva E., 1987. “Mossbauer effect study of magnetic properties of Fe1-qAlq, 0 < q < 0.5, alloys in the disordered phase”, J. Phys. F: Met. Phys. 17:2323-2335.

Piamba J. & Pérez Alcázar G.A. 2015. “Effect of disorder on the structural and magnetic properties of the Fe50Si50 nanostructured system”, J. Alloys Comps. 643: S297-S301.

Jiménez Juana M., Vélez Germán Y., Zamora Ligia E., & Pérez Germán A. 2012. “Estudio de las propiedades magnéticas y estructurales de aleaciones Nd16Fe76-xNixB8 con bajos contenidos de Ni”, Momento Rev. Fís. UNal. 44: 11-20.

Restrepo J., Pérez Alcázar G.A., & Bohórquez A. 1997. “Description in a local model of the magnetic field distributions of Fe12-xNix disordered alloys”, J. Appl. Phys. 81 (8): 4101-4103.

Zamora L.E., Pérez Alcázar G.A., Bohórquez A., Marco J.F., & González J.M. 1997. “Magnetic properties of the FexMn0.70-xAl0.30 (0.40

González Claudia, Pérez Alcázar Germán A., Zamora Ligia E., Tabares Jesús A., & Greneche Jean-Marc, 2002. “Magnetic properties of the FexMn0.600−xAl0.400, 0.200 ≤ x≤ 0.600, disordered alloy series”, J. Phys.: Condens. Matter 14: 6531-6542.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2016 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales