Bacteriófagos y fagoterapia: alternativa en la era de la resistencia antimicrobiana
PDF

Palabras clave

Bacteriófago
Fagoterapia
Resistencia antimicrobiana
Una sola salud

Cómo citar

Vives-Flórez, M. J. (2026). Bacteriófagos y fagoterapia: alternativa en la era de la resistencia antimicrobiana. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales. https://doi.org/10.18257/raccefyn.3328

Societal impact


Resumen

Los bacteriófagos, o fagos, son virus que infectan exclusivamente bacterias. Desde mediados del siglo pasado han ayudado a los científicos a esclarecer preguntas fundamentales de la biología, como la naturaleza de la molécula que codifica los rasgos hereditarios, el reconocimiento enzimático de secuencias de ADN específicas, el proceso de replicación del ADN, la secuenciación del ADN, la regulación génica y los operones, entre otras. Hoy en día, debido a la creciente problemática de la resistencia a los antimicrobianos (RAM), ha resurgido el interés por su papel como controladores de poblaciones bacterianas causantes de infecciones, que ciertamente fue el primero que se les atribuyó al ser descubiertos y que se conoce con el nombre de fagoterapia. Este artículo presenta el estado actual del conocimiento sobre la biología básica de los bacteriófagos en lo pertinente a su aplicación en fagoterapia, la visión contemporánea de las interacciones fago-bacteria, así como los avances y retos para la fagoterapia en una sociedad amenazada por la resistencia antimicrobiana.

PDF

Referencias

Abedon, S.T., Kuhl, S.J., Blasdel, B.G., Kutter, E.M. (2011). Phage treatment of human infections. Bacteriophage, 1(2), 66–85. https://doi.org/10.4161/bact.1.2.15845

Antimicrobial Resistance Collaborators. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet, 399, 629–655.

Baquero, D., Prada, C., Suesca, E., Tabares, D.M., Vives, M. Universidad de los Andes (2018). Composiciones tópicas que comprenden bacteriófagos que se encapsulan en liposomas. (Patente colombiana N° 55960). Superintendencia de Industria y Comercio, Colombia.

Barbosa, C., Venail, P., Holguín, A.V., Vives, M.J. (2013). Evolutionary and coevolutionary interactions between bacteriophage V1P2 and a phage cocktail with Vibrio harveyi CV1. Microbial Ecology, 66(4), 897–905. https://doi.org/10.1007/s00248-013-0284-2

Bordet, J. (1931). Croonian Lecture: The Theories of the Bacteriophage. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 107(752), 398–417. http://www.jstor.org/stable/81422

Brüssow, H. & Kutter, E. (2005). Phage Ecology. En E. Kutter, A. Sulakvelidze (Ed.), Bacteriophages: Biology and Applications (pp. 129–163). CRC Press.

Camacho, L.T., Gamba, D., Vives, M. (2023). Fago funcionalizado para el tratamiento del acné. (Solicitud de patente colombiana NC2023/0015253). Superintendencia de Industria y Comercio, Colombia.

Clavijo, I.V., Baquero, D., Hernández, S., Farfán, J.C., Arias, J., Arévalo, A., Donado-Godoy, P., Vives Flores, M. (2019a). Phage cocktail SalmoFREE® reduces Salmonella on a commercial broiler farm. Poultry Science, 98(10): 5054–5063. https://doi.org/10.3382/ps/pez251

Clavijo, V., Morales, T., Vives-Flores, M.J., Reyes-Muñoz, A. (2022). The gut microbiota of chickens in a commercial farm treated with a Salmonella phage cocktail. Scientific Reports, 12(1), 991. https://doi.org/10.1038/s41598-021-04679-6

Clavijo, I., Torres, M., Vives, M., Rito-Palomares, M. (2019b). Aqueous two-phase systems for the recovery and purification of phage therapy products: Recovery of Salmonella bacteriophage phi San23 as a case study. Separation and Purification Technology, 211: 322–329. https://doi.org/10.1016/j.seppur.2018.09.088

Clokie, M. & Kutter, E. (2020). An Interview with Elizabeth Kutter, PhD: The First Lady of Phage Research, Part 1. PHAGE (New Rochelle, N.Y.), 1(1): 10–15. https://doi.org/10.1089/phage.2019.29003.int

Contreras, M.A., Serrano-Rivero, Y., González-Pose, A., Salazar-Uribe, J., Rubio-Carrasquilla, M., Soares-Alves, M., Parra, N.C., Camacho-Casanova, F., Sánchez-Ramos, O., Moreno, E. (2023). Design and Construction of a Synthetic Nanobody Library: Testing Its Potential with a Single Selection Round Strategy. Molecules (Basel, Switzerland), 28(9), 3708. https://doi.org/10.3390/molecules28093708

Cuellar-Gaviria, T.Z., García-Botero, C., Ju, K.-S., Villegas-Escobar, V. (2023). The genome of Bacillus tequilensis EA-CB0015 sheds light into its epiphytic lifestyle and potential as a biocontrol agent. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1135487

Dedrick, R.M., Guerrero-Bustamante, C.A., Garlena, R.A., Russell, D.A., Ford, K., Harris, K., Gilmour, K.C., Soothill, J., Jacobs-Sera, D., Schooley, R.T., Hatfull, G.F., Spencer, H. (2019). Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nature Medicine, 25, 730–733. https://doi.org/10.1038/s41591-019-0437-z

Dedrick, R.M., Smith, B.E., Cristinziano, M., Freeman, K.G., Jacobs-Sera, D., Belessis, Y., Whitney Brown, A., Cohen, K.A., Davidson, R.M., van Duin, D., Gainey, A., Garcia, C.B., Robert George, C.R., Haidar, G., Ip, W., Iredell, J., Khatami, A., Little, J.S., Malmivaara, K., McMullan, B.J., … Hatfull, G.F. (2023). Phage Therapy of Mycobacterium Infections: Compassionate Use of Phages in 20 Patients With Drug-Resistant Mycobacterial Disease. Clinical Infectious Diseases, 76(1), 103–112. https://doi.org/10.1093/cid/ciac453

Díaz, A. (2020a). Brigadas para buscar el virus. Universidad de los Andes. https://www.uniandes.edu.co/es/noticias/salud-y-medicina/brigadas-para-buscar-el-virus

Díaz, A. (2020b). Cazadores del virus en el Putumayo. Universidad de los Andes. https://www.uniandes.edu.co/es/noticias/comunidad/cazadores-del-virus-en-el-putumayo

Donado-Godoy, P., Clavijo, V., León, M., Tafur, M.A., Gonzáles, S., Hume, M., Alali, W., Walls, I., Lo Fo Wong, D.M., Doyle, M.P. (2012a). Prevalence of Salmonella on retail broiler chicken meat carcasses in Colombia. Journal of Food Protection, 75(6), 1134–1138. https://doi.org/10.4315/0362-028X.JFP-11-513

Donado-Godoy, P., Gardner, I., Byrne, B.A., León, M., Pérez-Gutiérrez, E., Ovalle, M.V., Tafur, M.A., Miller, W. (2012b). Prevalence, risk factors, and antimicrobial resistance profiles of Salmonella from commercial broiler farms in two important poultry-producing regions of Colombia. Journal of Food Protection, 75(5), 874–883. https://doi.org/10.4315/0362-028X.JFP-11-458

Drobifarm (s.f.). Resultados de la búsqueda por producto Acidofilofago. https://www.drobifarm.com.ar/producto/acidofilofago/

Duckworth, D.H. (1976). Who discovered bacteriophage? Bacteriological Reviews, 40(4), 793–802.

EAN Universidad. (23 de julio de 2025). Emprender desde la ciencia: una colombiana lo hizo posible con bacteriófagos para la industria avícola. https://universidadean.edu.co/noticias/emprender-desde-la-ciencia-una-colombiana-lo-hizo-posible-con-bacteriofagos-para-la-industria-avicola

Eaton, M.D. & Bayne-Jones, S. (1934). Bacteriophage Therapy: Review of the principles and results of the use of bacteriophage in the treatment of infections. JAMA, 103(24): 1847–1853. https://doi.org/10.1001/jama.1934.72750500003009

Ellis, E.L. & Delbrück, M. (1939). The growth of bacteriophage. The Journal of General Physiology, 22(3): 365–384. https://doi.org/10.1085/jgp.22.3.365

Farfán, J., González, J.M., Vives, M. (2022). The immunomodulatory potential of phage therapy to treat acne: a review on bacterial lysis and immunomodulation. PeerJ, 10, e13553. https://doi.org/10.7717/peerj.13553

Farfán-Esquivel, J.C., Gutiérrez, M.V., Ondo-Méndez, A., González, J.M., Vives-Flórez, M.J. (2025). Antibacterial activity and impact on keratinocyte cell growth of Cutibacterium acnes bacteriophages in a Cutibacterium acnes IA1-colonized keratinocyte model. Current Research in Microbial Sciences, 8, 100356. https://doi.org/10.1016/j.crmicr.2025.100356

Gallagher, J. (8 de mayo de 2019). Phage therapy: ‘Viral cocktail saved my daughter’s life’. BBC News. https://www.bbc.com/news/health-48199915

Geller, B. (30 de julio de 2025). Especialistas del CONICET desarrollan un método rápido y de bajo costo para el diagnóstico de la tuberculosis. CONICET Consejo Nacional de Investigaciones Científicas y Técnicas. https://www.conicet.gov.ar/especialistas-del-conicet-desarrollan-un-metodo-rapido-y-de-bajo-costo-para-el-diagnostico-de-la-tuberculosis/

Gómez, M.C. & Vives F., M.J. (2009). Bacteriófagos, virus de bacterias que curan infecciones. Hipótesis Apuntes Científicos Uniandinos, 10, 38–46.

Grisales-Vargas, C.D., Ramírez-Cuartas, C.A., Pérez-Jaramillo, J.E. (2022). The First Complete Genome Resource of a Ralstonia solanacearum Phage UAM5 from Colombia. Molecular Plant-Microbe Interactions, 35(6), 496–499. https://doi.org/10.1094/MPMI-01-22-0033-A

Guttman, B., Raya, R., Kutter, E. Basic phage biology. En E. Kutter, A. Sulakvelidze (Ed.), Bacteriophages: Biology and Applications (pp. 29–66). CRC Press.

Guzmán, M. (2015). El bacteriófago, cien años de hallazgos trascendentales. Biomédica, 35(2), 159–161. https://revistabiomedica.org/index.php/biomedica/article/view/2860

Harding, K.R., Kyte, N., Fineran, P.C. (2023). Jumbo phages. Current Biology, 33(14), R750–R751. https://doi.org/10.1016/j.cub.2023.05.056

Häusler, T. (2008). Viruses vs. Superbugs. A solution to the antibiotic crises? Macmillan.

Hernández, S. & Vives, M.J. (2020). Phages in Anaerobic Systems. Viruses, 12(10), 1091. https://doi.org/10.3390/v12101091

Hernández-Villamizar, S., Chica-Cárdenas, L.A., Morales-Mancera, L.T., Vives-Flórez, M.J. (2023). Anaerobiosis, a neglected factor in phage-bacteria interactions. Applied and Environmental Microbiology, 89, e01491-23. https://doi.org/10.1128/aem.01491-23

Hernández-Villamizar, S., Bonilla, J.A., Jaramillo, Á.H., Piñeros, R., Ripoll, A., Fonseca, L., Riveros, K., Vives, M.J., Barato, P., Clavijo, V. (2024). SalmoFree® Phage Additive Proves Its Safety for Laying Hens. PHAGE (New Rochelle, N.Y.), 5(3), 143–152. https://doi.org/10.1089/phage.2024.0010

Hernández-Villamizar, S., Bonilla, J.A., García-Vega, A.S., Arévalo-Mayorga, S., Castrillo, D., Medina, V.A., Triviño-García, E.S., Romero, N., Piñeros, R., Fonseca, L., Donado, P., Vives, M.J., Barato, P., Clavijo, V. (2025). Improving health and productivity in laying hens with the phage cocktail SalmoFree®. Poultry Science, 104(11), 105638. https://doi.org/10.1016/j.psj.2025.105638

Holguin, A.V., Cárdenas, P., Prada-Peñaranda, C., Rabelo-Leite, L., Buitrago, C., Clavijo, V., Oliveira, G., Leekitcharoenphon, P., Aarestrup, F.M., Vives, M.J. (2019). Host Resistance, Genomics and Population Dynamics in a Salmonella Enteritidis and Phage System. Viruses, 11(2), 188. https://doi.org/10.3390/v11020188

Holguín, A.V., Jiménez, A.P., Vives, M. Universidad de los Andes. (2015). Composición que comprende bacteriófagos para reducir, eliminar y/o prevenir Salmonella Enteritidis, Salmonella Typhimurium and Salmonella Paratyphi B. (Patente colombiana N° 23026. WO2017089947A2). Superintendencia de Industria y Comercio, Colombia.

Holguín, A.V., Rangel, G., Clavijo, V., Prada, C., Mantilla, M., Gómez, M.C., Kutter, E., Taylor, C., Fineran, P.C., Barrios, A.F.G., Vives, M.J. (2015). Phage ΦPan70, a Putative Temperate Phage, Controls Pseudomonas aeruginosa in Planktonic, Biofilm and Burn Mouse Model Assays. Viruses, 7(8), 4602–4623. https://doi.org/10.3390/v7082835

ICTV. (3 de marzo de 2025). New Taxonomy Release: MSL40. https://ictv.global/news/taxonomy_2024

Keen, E.C. (2015). A century of phage research: Bacteriophages and the shaping of modern biology. BioEssays, 37(1), 6–9. https://doi.org/10.1002/bies.201400152

Lesmes-Díaz, L. (2023). Así nació la primera planta de bacteriófagos en Colombia. El Tiempo. https://www.eltiempo.com/tecnosfera/novedades-tecnologia/asi-nacio-la-primera-planta-de-bacteriofagos-en-colombia-770106

Lipman, N. (4 de noviembre de 2019). Superbacterias: tenía “la peor infección del planeta” pero su esposa no se dio por vencida. BBC News Mundo. https://www.bbc.com/mundo/noticias-50293846

Mäntynen, S., Laanto, E., Oksanen, H.M., Poranen, M.M., Díaz-Muñoz, S.L. (2021). Black box of phage–bacterium interactions: exploring alternative phage infection strategies. Open Biology, 11, 210188. https://doi.org/10.1098/rsob.210188

Martins, A. (20 de septiembre de 2024). Los científicos uruguayos que usan “verdugos buenos” para combatir una gran amenaza a la salud global. BBC News Mundo. https://www.bbc.com/mundo/articles/c1w7p115j9zo

Montiel, G. (17 de marzo de 2017). Laboratorio Roux-Ocefa: 350 familias en vilo por el vaciamiento patronal. Tiempo Argentino. https://www.tiempoar.com.ar/ta_article/laboratorio-roux-ocefa-350-familias-en-vilo-por-el-vaciamiento-patronal/

Moreno, E., Valdés-Tresanco, M.S., Molina-Zapata, A., Sánchez-Ramos, O. (2022). Structure-based design and construction of a synthetic phage display nanobody library. BMC Research Notes, 15(1), 124. https://doi.org/10.1186/s13104-022-06001-7

Mukane, L., Racenis, K., Rezevska, D., Petersons, A., Kroica, J. (2022). Anti-biofilm effect of bacteriophages and antibiotics against uropathogenic Escherichia coli. Antibiotics (Basel, Switzerland), 11(12), 1706. https://doi.org/10.3390/antibiotics11121706

Mushegian, A.R. (2020). Are there 10³¹ virus particles on Earth, or more, or fewer? Journal of Bacteriology, 202(9), e00052-20. https://doi.org/10.1128/JB.00052-20

Nagel, T., Musila, L., Muthoni, M., Nikolich, M., Nakavuma, J.L., Clokie, M.R. (2022). Phage banks as potential tools to rapidly and cost-effectively manage antimicrobial resistance in the developing world. Current Opinion in Virology, 53, 101208. https://doi.org/10.1016/j.coviro.2022.101208

Pirnay, J.P., Verbeken, G., Ceyssens, P.J., Huys, I., De Vos, D., Ameloot, C., Fauconnier, A. (2018). The Magistral Phage. Viruses, 10(2), 64. https://doi.org/10.3390/v10020064

Pourcel, C., Midoux, C., Vergnaud, G., Latino, L. (2017). A carrier state is established in Pseudomonas aeruginosa by phage LeviOr01, a newly isolated ssRNA levivirus. Journal of General Virology, 98(8), 2181–2189. https://doi.org/10.1099/jgv.0.000883

Prada-Peñaranda, C., Holguín-Moreno, A.V., González-Barrios, A.F., Vives-Flórez, M.J. (2015). Fagoterapia, alternativa para el control de las infecciones bacterianas. Perspectivas en Colombia. Universitas Scientiarum, 20(1), 43–60. https://doi.org/10.11144/Javeriana.SC20-1.faci

Prada-Peñaranda, C., Salazar, M., Güiza, L., Pérez, M.I., Leidy, C., Vives-Flórez, M.J. (2018). Phage preparation FBL1 prevents Bacillus licheniformis biofilm, bacterium responsible for the mortality of the Pacific White Shrimp Litopenaeus vannamei. Aquaculture, 484, 160–167. https://doi.org/10.1016/j.aquaculture.2017.11.007

Ptashne, M. (2004). A Genetic Switch: Phage Lambda Revisited (3rd ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

Pye, H.V., Krishnamurthi, R., Cook, R., Adriaenssens, E.M. (2024). Phage diversity in One Health. Essays in Biochemistry, 68(5), 607–619. https://doi.org/10.1042/EBC20240012

Relich, R.F. & Loeffelholz, M.J. (2023). Taxonomic changes for human viruses, 2020 to 2022. Journal of Clinical Microbiology, 61, e00337-22. https://doi.org/10.1128/jcm.00337-22

Rondón, L., Urdániz, E., Latini, C., Payaslian, F., Matteo, M., Sosa, E.J., Do Porto, D.F., Turjanski, A.G., Nemirovsky, S., Hatfull, G.F., Poggi, S., Piuri, M. (2018). Fluoromycobacteriophages can detect viable Mycobacterium tuberculosis and determine phenotypic rifampicin resistance in 3–5 days from sputum collection. Frontiers in Microbiology, 9, 1471. https://doi.org/10.3389/fmicb.2018.01471

Siringan, P., Connerton, P.L., Cummings, N.J., Connerton, I.F. (2014). Alternative bacteriophage life cycles: the carrier state of Campylobacter jejuni. Open Biology, 4, 130200. https://doi.org/10.1098/rsob.130200

Strathdee, S. & Patterson, T. (2019). The Perfect Predator. Grand Central Publishing.

Sulakvelidze, A., Alavidze, Z., Morris, G. (2001). Minireview — Bacteriophage Therapy. Antimicrobial Agents and Chemotherapy, 45(3), 649–659. https://doi.org/10.1128/AAC.45.3.649–659.2001

Sulakvelidze, A. & Kutter, E. (2005). Bacteriophage therapy in humans. En E. Kutter, A. Sulakvelidze (Ed.), Bacteriophages: Biology and Applications (pp. 381–436). CRC Press.

Tellez-Carrasquilla, S., Salazar-Ospina, L., Jiménez, J.N. (2024). High activity and specificity of bacteriophage cocktails against carbapenem-resistant Klebsiella pneumoniae belonging to the high-risk clones CG258 and ST307. Frontiers in Microbiology, 15, 1502593. https://doi.org/10.3389/fmicb.2024.1502593

Tiseyra, F. (28 de junio de 2019). Roux-Ocefa: resurge el emblemático laboratorio nacional. Ceprofar. https://www.ceprofar.com.ar/2019/06/28/roux-ocefa-resurge-el-emblematico-laboratorio-nacional/

Torres-Acosta, M.A., Clavijo, V., Vaglio, C., González-Barrios, A.F., Vives-Flórez, M.J., Rito-Palomares, M. (2019). Economic evaluation of the development of a phage therapy product for the control of Salmonella in poultry. Biotechnology Progress, 35(5), e2852. https://doi.org/10.1002/btpr.2852

Torres Di Bello, D., Narváez, D.M., Groot de Restrepo, H. & Vives, M.J. (2023). Cytotoxic evaluation in HaCaT cells of the Pa.7 bacteriophage from Cutibacterium (Propionibacterium) acnes, free and encapsulated within liposomes. PHAGE (New Rochelle, N.Y.), 4(1), 26–34. https://doi.org/10.1089/phage.2022.0038

Valencia-Toxqui, G. & Ramsey, J. (2024). How to introduce a new bacteriophage on the block: a short guide to phage classification. Journal of Virology, 98, e01821-23. https://doi.org/10.1128/jvi.01821-23

Vives, M.J. (2025). Decoding the human phageome helps to unravel microbial dynamics in health and disease. Applied and Environmental Microbiology, 91, e00919-25. https://doi.org/10.1128/aem.00919-25

Zerbini, F.M., Simmonds, P., Adriaenssens, E.M., Lefkowitz, E.J., Oksanen, H.M., Alfenas-Zerbini, P., Aylward, F.O., Freitas-Astúa, J., Hughes, H.R., Łobocka, M., Krupovic, M., Kuhn, J.H., Mushegian, A., Penzes, J.J., Reyes, A., Robertson, D.L., Roux, S., Rubino, L., Sabanadzovic, S., … Varsani, A. (2025). Virus species names have been standardized; virus names remain unchanged. mSphere, 10, e00020-25. https://doi.org/10.1128/msphere.00020-25

Zurabov, F., Glazunov, E., Kochetova, T., Uskevich, V., Popova, V. (2023). Bacteriophages with depolymerase activity in the control of antibiotic-resistant Klebsiella pneumoniae biofilms. Scientific Reports, 13, 15188. https://doi.org/10.1038/s41598-023-42505-3

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor -1 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales

##plugins.themes.healthSciences.displayStats.downloads##

##plugins.themes.healthSciences.displayStats.noStats##