Resumen
El Sol es mucho más que nuestra fuente de luz y calor; es un laboratorio cuántico natural donde procesos que van desde la fusión nuclear hasta las interacciones entre radiación y materia tienen lugar en condiciones únicas (ambientes estelares). La mecánica cuántica gobierna los procesos de fusión en el núcleo, el espectro de fotones que emerge de la fotosfera y las ligeras huellas de polarización en la atmósfera solar. Estos efectos no solo sostienen la vida en la Tierra, también proporcionan pruebas fundamentales para la física cuántica. En este artículo exploramos cómo los principios cuánticos moldean el comportamiento del Sol, cómo los estudios solares han impulsado nuestra comprensión de la cuántica y cómo estas ideas inspiran hoy tecnologías que van desde la detección de neutrinos hasta la fotovoltaica y la información cuántica.
Referencias
Aschwanden, M. J. (2006). Physics of the solar corona: an introduction with problems and solutions. Springer Berlin Heidelberg.
Athay, R. G. (2012). The solar chromosphere and corona: Quiet sun (Vol. 53). Springer Science & Business Media.
Bahcall, J. N. (1978). Solar neutrino experiments. Reviews of Modern Physics, 50(4), 881.
Bahcall, J. N. & Bethe, H. A. (1990). Solution of the solar-neutrino problem. Physical Review Letters, 65(18), 2233.
Bekker, S. Z., Ryakhovsky, I. A., Korsunskaya, J. A. (2021). Modeling of the lower ionosphere during solar X-ray flares of different classes. Journal of Geophysical Research: Space Physics, 126(2), e2020JA028767.
Basu, S., Chaplin, W. J., Elsworth, Y., New, R., Serenelli, A. M. (2009). Fresh insights on the structure of the solar core. The Astrophysical Journal, 699(2), 1403.
Berdyugina, S. V. & Solanki, S. K. (2002). The molecular Zeeman effect and diagnostics of solar and stellar magnetic fields-I. Theoretical spectral patterns in the Zeeman regime. Astronomy & Astrophysics, 385(2), 701-715.
Braams, C. M. & Stott, P. E. (2002). Nuclear Fusion: half a century of magnetic confinement research. Plasma Physics and Controlled Fusion, 44(8), 1767-1767.
Caspi, A., McTiernan, J. M., Warren, H. P. (2014). Constraining solar flare differential emission measures with EVE and RHESSI. The Astrophysical Journal Letters, 788(2), L31.
Centeno, R., Collados, M., Bueno, J. T. (2006). Spectropolarimetric investigation of the propagation of magnetoacoustic waves and shock formation in sunspot atmospheres. The Astrophysical Journal, 640(2), 1153.
Dar, A. & Shaviv, G. (1999). The solar neutrino problem-an update. Physics reports, 311(3-5), 115-141.
Del Toro-Iniesta, J. C. (2003). Introduction to spectropolarimetry. Cambridge University Press.
Duan, Z., Deng, Y., Yu, Y., Chen, S., Qin, J., Wang, H., Ding, X., Peng, L., Schneider, C., Wang, D., Höfling, S., Dowling, J., Lu, C., Pan, J. (2019). Quantum beat between sunlight and single photons. Nano letters, 20(1), 152-157. https://doi.org/10.1021/acs.nanolett.9b03512
Elsworth, Y., Howe, R., Isaak, G. R., McLeod, C. P., New, R. (1990). Evidence from solar seismology against non-standard solar-core models. Nature, 347(6293), 536-539.
El Chaar, L. & El Zein, N. (2011). Review of photovoltaic technologies. Renewable and sustainable energy reviews, 15(5), 2165-2175.
Epelbaum, E., Hammer, H. W., Meißner, U. G. (2009). Modern theory of nuclear forces. Reviews of Modern Physics, 81(4), 1773-1825.
Fluri, D. M. & Stenflo, J. O. (1999). Continuum polarization in the solar spectrum. Astronomy and Astrophysics, 341, 902-911.
Gamow, G. (1928). Zur Quantentheorie des Atomkernes. Zeitschrift für Physik, 51(3-4), 204-212.
Heil, M., Dillmann, I., Käppeler, F., Plag, R. ESR measurements of proton-induced reaction rates in the Gamow window of the astrophysical p process. Experimental Proposal E, 62.
Huang, C. & Li, L. (2018). Magnetic confinement fusion: a brief review. Frontiers in Energy, 12(2), 305-313.
Iben, I. (2013). Stellar evolution physics. Cambridge University Press. https://doi.org/10.1017/ CBO9781139047009
Iglesias, F. A. & Feller, A. (2019). Instrumentation for solar spectropolarimetry: state of the art and prospects. Optical Engineering, 58(8), 082417-082417.
Kajita, T. (2006). Discovery of neutrino oscillations. Reports on Progress in Physics, 69(6), 1607.
Kayser, B. (1981). On the quantum mechanics of neutrino oscillation. Physical Review D, 24(1), 110.
Kirsten, T. A. (1999). Solar neutrino experiments: results and implications. Reviews of Modern Physics, 71(4), 1213.
Klimchuk, J. A. (2015). Key aspects of coronal heating. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2042), 20140256.
Manoukian, E.B. (2020). Black Body Radiation: The Planck Law. In: 100 Years of Fundamental Theoretical Physics in the Palm of Your Hand. Springer, Cham. https://doi.org/10.1007/978- 3-030-51081-71
McDonald, A. B., Klein, J. R., L. Wark, D. (2003). Solving the solar neutrino problem. Scientific American, 288(4), 40-49.
Ongena, J., Koch, R., Wolf, R., Zohm, H. (2016). Magnetic-confinement fusion. Nature Physics, 12(5), 398-410.
Parida, B., Iniyan, S., Goic, R. (2011). A review of solar photovoltaic technologies. Renewable and sustainable energy reviews, 15(3), 1625-1636.
Parker, E. N. (2009). Solar magnetism: the state of our knowledge and ignorance. Space Science Reviews, 144(1), 15-24.
Phillips, K. J. H. (2004). The solar flare 3.8-10 keV X-ray spectrum. The Astrophysical Journal, 605(2), 921.
Rutten, R. J. & Schrijver, C. J. (Eds.). (2012). Solar surface magnetism (Vol. 433). Springer Science & Business Media.
Saint-Hilaire, P., Oliveros, J. C. M., Hudson, H. S. (2021). Thomson Scattering in the Lower Corona in the Presence of Sunspots. The Astrophysical Journal, 923(2), 276.
Salpeter, E. E. (1952). The Reaction Rate of the Proton-Proton Chain. Astrophysical Journal, 116, 649-650.
Schad, T. A., Petrie, G. J. D., Kuhn, J. R., Fehlmann, A., Rimmele, T., Tritschler, A., Woeger, F., Scholl, I., Williams, R., Harrington, D., Paraschiv, A. R., & Szente, J. (2024). Mapping the Sun's coronal magnetic field using the Zeeman effect. Science Advances, 10(37), eadq1604.
Scholberg, K. (2012). Supernova neutrino detection. Annual Review of Nuclear and Particle Science, 62(1), 81-103.
Schwetz, T., Tórtola, M., Valle, J. W. (2008). Three-flavour neutrino oscillation update. New Journal of Physics, 10(11), 113011.
Sinha, S., Jeyaseelan, C., Singh, G., Munjal, T., Paul, D. (2023). Spectroscopy-Principle, types, and applications. In Basic biotechniques for bioprocess and bioentrepreneurship (pp. 145- 164). Academic Press.
Stenflo, J. O. (1991). Applications of the Hanle effect in solar physics. In The Hanle Effect and Level-Crossing Spectroscopy (pp. 237-281). Springer US.
Stenflo, J. & Keller, C. (1997). The second solar spectrum. A new window for diagnostics of the Sun. Astronomy and Astrophysics, 321, 927-934.
Stenflo, J. O. (2004). Hidden magnetism. Nature, 430(6997), 304-305.https://doi.org/10.1038/430304a
Stenflo, J. O. (2011). Unsolved problems in solar polarization. In Kuhn, J.R.m, Harrington, D.M., Lin, H., Berdyugina, S.V., Trujillo-Bueno, J., Keil, S.L., Rimmele, T., (Editors). Solar Polarization 6. Astronomical Society of the Pacific Conference Series.
Smitha, H. N., Nagendra, K. N., Stenflo, J. O., Bianda, M., Ramelli, R. (2014). The quantum interference effects in the Sc II 4247 Å line of the Second Solar Spectrum. The Astrophysical Journal, 794(1), 30. https://doi.org/10.1088/0004-637X/794/1/30
Wiescher, M., Bertulani, C. A., Brune, C. R., deBoer, R. J., Diaz-Torres, A., Gasques, L. R., Langanke, K., Navrátil, P., Nazarewicz, W., Okołowicz, J., Phillips, D. R., Płoszajczak, M., Quaglioni, S., & Tumino, A. (2025). Quantum physics of stars. Reviews of Modern Physics, 97(2), 025003.

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2026 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales

