Deconvolución Experimental de los Mecanismos de Conmutación Electrónicos y Térmicos en la Transición Metal-Aislante del VO<sub>2</sub>
PDF (Inglés)

Palabras clave

Transición metal-aislante
Dióxido de vanadio
Sistemas fuertemente correlacionados

Cómo citar

Ramírez, J. G. (2026). Deconvolución Experimental de los Mecanismos de Conmutación Electrónicos y Térmicos en la Transición Metal-Aislante del VO2. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales. https://doi.org/10.18257/raccefyn.3273

Societal impact


Resumen

La transición metal-aislante (MIT) en el dióxido de vanadio (VO2) representa un sistema canónico de electrones correlacionados donde correlaciones electrónicas y distorsiones estructurales operan cooperativamente. Presentamos una metodología experimental para deconvolucionar las vías de conmutación electrónica y térmica mediante mediciones pulsadas corriente-voltaje dependientes de temperatura, minimizando efectos de auto-calentamiento. El espectro de conmutación se descompone en ramas electrónicas (débil dependencia térmica) y ramas térmicas (dependencia parabólica, calentamiento Joule). Las ramas electrónicas identificadas permiten aplicaciones en memorias neuromórficas y osciladores de alta frecuencia. Este trabajo proporciona evidencia experimental directa de la operación simultánea de ambos mecanismos, estableciendo un marco cuantitativo para transiciones de fase impulsadas por voltaje en óxidos correlacionados.

PDF (Inglés)

Referencias

Budai, J. D., Hong, J., Manley, M. E., Specht, E. D., Li, C. W., Tischler, J. Z., Abernathy, D. L., Said, A. H., Leu, B. M., Boatner, L. A., McQueeney, R. J., & Delaire, O. (2014). Metallization of vanadium dioxide driven by large phonon entropy. Nature, 515(7528), 535–539. https://doi.org/10.1038/nature13865

Chen, S., Wang, Z., Ren, H., Chen, Y., Yan, W., Wang, C., Li, B., Jiang, J., & Zou, C. (2019). Gate-controlled VO2 phase transition for high-performance smart windows. Science Advances, 5(3), Article eaav6815. https://doi.org/10.1126/sciadv.aav6815

Cocker, T. L., Titova, L. V., Fourmaux, S., Holloway, G., Bandulet, H.-C., Brassard, D., Kieffer, J.-C., El Khakani, M. A., & Hegmann, F. A. (2012). Phase diagram of the ultrafast photoinduced insulator-metal transition in vanadium dioxide. Physical Review B, 85(15), Article 155120. https://link.aps.org/doi/10.1103/PhysRevB.85.155120

Crunteanu, A., Givernaud, J., Leroy, J., Mardivirin, D., Champeaux, C., Orlianges, J.-C., Catherinot, A., & Blondy, P. (2010). Voltage- and current-activated metal-insulator transition in VO2-based electrical switches: A lifetime operation analysis. Science and Technology of Advanced Materials, 11(6), Article 065002. https://doi.org/10.1088/1468-6996/11/6/065002

Del Valle, J., Pavel, S., Tesler, F., Vargas, N. M., Kalcheim, Y., Wang, P., Trastoy, J., Lee, M.-H., Kassabian, G., Ramírez, J. G., Rozenberg, M. J., & Schuller, I. K. (2019). Subthreshold firing in Mott nanodevices. Nature, 569(7756), 388–392. https://doi.org/10.1038/s41586-019-1159-6

Del Valle, J., Ramírez, J. G., Rozenberg, M. J., & Schuller, I. K. (2018). Challenges in materials and devices for resistive-switching-based neuromorphic computing. Journal of Applied Physics, 124(21), 211101. https://doi.org/10.1063/1.5047800

Dietze, S. H., Marsh, M. J., Wang, S., Ramírez, J.-G., Cai, Z.-H., Mohanty, J. R., Schuller, I. K., & Shpyrko, O. G. (2014). X-ray-induced persistent photoconductivity in vanadium dioxide. Physical Review B, 90(16), 165109. https://doi.org/10.1103/PhysRevB.90.165109

Guénon, S., Scharinger, S., Wang, S., Ramírez, J. G., Koelle, D., Kleiner, R., & Schuller, I. K. (2013). Electrical breakdown in a V2O3 device at the insulator-to-metal transition. Europhysics Letters, 101(5), 57003. https://doi.org/10.1209/0295-5075/101/57003

Jager, M. F., Ott, C., Kraus, P. M., Kaplan, C. J., Pouse, W., Marvel, R. E., Haglund, R. F., Neumark, D. M., & Leone, S. R. (2017). Tracking the insulator-to-metal phase transition in VO2 with few-femtosecond extreme UV transient absorption spectroscopy. Proceedings of the National Academy of Sciences, 114(36), 9558–9563. https://doi.org/10.1073/pnas.1707602114

Joushaghani, A., Jeong, J., Paradis, S., Alain, D., Aitchison, J. S., & Poon, J. K. S. (2015). Wavelength-size hybrid Si-VO2 waveguide electroabsorption optical switches and photodetectors. Optics Express, 23(3), 3657–3668. https://doi.org/10.1364/OE.23.003657

Kalcheim, Y., Camjayi, A., del Valle, J., Salev, P., Rozenberg, M., & Schuller, I. K. (2020). Non-thermal resistive switching in Mott insulator nanowires. Nature Communications, 11(1), 2985. https://doi.org/10.1038/s41467-020-16752-1

Kim, S., Backes, S., Yoon, H., Kim, W., Sohn, C., Son, J., Biermann, S., Noh, T. W., & Park, S. Y. (2022). Orbital-selective Mott and Peierls transition in HxVO2. npj Quantum Materials, 7(95), 2397–4648. https://doi.org/10.1038/s41535-022-00505-y

Li, D., Sharma, A. A., Gala, D. K., Shukla, N., Paik, H., Datta, S., Schlom, D. G., Bain, J. A., & Skowronski, M. (2016). Joule Heating-Induced Metal–Insulator Transition in Epitaxial VO2/TiO2. ACS Applied Materials & Interfaces, 8(26), 12908–12914. https://doi.org/10.1021/acsami.6b03501

Manca, N., Kanki, T., Tanaka, H., Marré, D., & Pellegrino, L. (2015). Influence of thermal boundary conditions on the current-driven resistive transition in VO2 microbridges. Applied Physics Letters, 107(14), Article 143508. https://doi.org/10.1063/1.4933014

Markov, P., Marvel, R. E., Conley, H. J., Miller, K. J., Haglund, R. F. J., & Weiss, S. M. (2015). Optically monitored electrical switching in VO2. ACS Photonics, 2(8), 1175–1182. https://doi.org/10.1021/acsphotonics.5b00244

Morrison, V. R., Chatelain, R. P., Tiwari, K. L., Hendaoui, A., Bruhács, A., Chaker, M., & Siwick, B. J. (2014). A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction. Science, 346(6208), 445–448. https://doi.org/10.1126/science.1253779

Murtagh, O., Walls, B., & Shvets, I. V. (2020). Controlling the resistive switching hysteresis in VO2 thin films via application of pulsed voltage. Applied Physics Letters, 117(6), Article 063501. https://doi.org/10.1063/5.0017784

O’Callahan, B. T., Jones, A. C., Hyung Park, J., Cobden, D. H., Atkin, J. M., & Raschke, M. B. (2015). Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO2. Nature Communications, 6(1), Article 6849. https://doi.org/10.1038/ncomms7849

Oka, T., Arita, R., & Aoki, H. (2003). Breakdown of a Mott insulator: A nonadiabatic tunneling mechanism. Physical Review Letters, 91(6), Article 066406. https://doi.org/10.1103/PhysRevLett.91.066406

Pashkin, A., Kübler, C., Ehrke, H., Lopez, R., Halabica, A., Haglund Jr., R. F., Huber, R., & Leitenstorfer, A. (2011). Ultrafast insulator-metal phase transition in VO2 studied by multiterahertz spectroscopy. Physical Review B, 83(19), Article 195120. https://doi.org/10.1103/PhysRevB.83.195120

Pósa, L., Hornung, P., Török, T. N., Schmid, S. W., Arjmandabasi, S., Molnár, G., Baji, Z., Dražić, G., Halbritter, A. E., & Volk, J. (2023). Interplay of Thermal and Electronic Effects in the Mott Transition of Nanosized VO2 Phase Change Memory Devices. ACS Applied Nano Materials, 6(11), 9137–9147. https://doi.org/10.1021/acsanm.3c00150

Pouget, J. P., Launois, H., D’Haenens, J. P., Merenda, P., & Rice, T. M. (1975). Electron localization induced by uniaxial stress in pure VO2. Physical Review Letters, 35(13), 873–875. https://doi.org/10.1103/PhysRevLett.35.873

Qazilbash, M. M., Brehm, M., Chae, B.-G., Ho, P.-C., Andreev, G. O., Kim, B.-J., Yun, S. J., Balatsky, A. V., Maple, M. B., Keilmann, F., Kim, H.-T., & Basov, D. N. (2007). Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science, 318(5857), 1750–1753. https://doi.org/10.1126/science.1150124

Radu, I. P., Govoreanu, B., Mertens, S., Shi, X., Cantoro, M., Schaekers, M., Jurczak, M., De Gendt, S., Stesmans, A., Kittl, J. A., Heyns, M., & Martens, K. (2015). Switching mechanism in two-terminal vanadium dioxide devices. Nanotechnology, 26(16), Article 015201. https://doi.org/10.1088/0957-4484/26/16/165202

Ramírez, J. G., Saerbeck, T., Wang, S., Trastoy, J., Malnou, M., Lesueur, J., Crocombette, J. P., Villegas, J. E., & Schuller, I. K. (2015). Effect of disorder on the metal-insulator transition of vanadium oxides: Local versus global effects. Physical Review B, 91(20), Article 205123. https://doi.org/10.1103/PhysRevB.91.205123

Ramírez, J.-G., Sharoni, A., Dubi, Y., Gómez, M. E., & Schuller, I. K. (2009). First-order reversal curve measurements of the metal-insulator transition in VO2: Signatures of persistent metallic domains. Physical Review B, 79(23), Article 235110. https://link.aps.org/doi/10.1103/PhysRevB.79.235110

Rana, A., Li, C., Koster, G., & Hilgenkamp, H. (2020). Resistive switching studies in VO2 thin films. Scientific Reports, 10(1), 3293. https://doi.org/10.1038/s41598-020-60373-z

Rathi, S., Park, J. H., Lee, I.-Y., Baik, J. M., Yi, K. S., & Kim, G.-H. (2014). Unravelling the switching mechanisms in electric field induced insulator-metal transitions in VO2 nanobeams. Journal of Physics D: Applied Physics, 47(29), Article 295101. https://doi.org/10.1088/0022-3727/47/29/295101

Sharoni, A., Ramírez, J. G., & Schuller, I. K. (2008). Multiple avalanches across the metal-insulator transition of vanadium oxide nanoscaled junctions. Physical Review Letters, 101(2), Article 026404. https://link.aps.org/doi/10.1103/PhysRevLett.101.026404

Shukla, N., Parihar, A., Freeman, E., Paik, H., Stone, G., Narayanan, V., Wen, H., Cai, Z., Gopalan, V., Engel-Herbert, R., Schlom, D. G., Raychowdhury, A., & Datta, S. (2014). Synchronized charge oscillations in correlated electron systems. Scientific Reports, 4(1), Article 4964. https://doi.org/10.1038/srep04964

Sood, A., Shen, X., Shi, Y., Kumar, S., Park, S. J., Zajac, M., Sun, Y., Chen, L.-Q., Ramanathan, S., Wang, X., Chueh, W. C., & Lindenberg, A. M. (2021). Universal phase dynamics in VO2 switches revealed by ultrafast operando diffraction. Science, 373(6551), 352–355. https://doi.org/10.1126/science.abc0652

Stefanovich, G., Pergament, A., & Stefanovich, D. (2000). Electrical switching and Mott transition in VO2. Journal of Physics: Condensed Matter, 12(41), Article 8837. https://doi.org/10.1088/0953-8984/12/41/310

Stoliar, P., Cario, L., Janod, E., Corraze, B., Guillot-Deudon, C., Salmon-Bourmand, S., Guiot, V., Tranchant, J., & Rozenberg, M. (2013). Universal electric-field-driven resistive transition in narrow-gap Mott insulators. Advanced Materials, 25(23), 3222–3226. https://doi.org/10.1002/adma.201301113

Valmianski, I., Wang, P. Y., Wang, S., Ramírez, J. G., Guénon, S., & Schuller, I. K. (2018). Origin of the current-driven breakdown in vanadium oxides: Thermal versus electronic. Physical Review B, 98(19), Article 195144. https://doi.org/10.1103/PhysRevB.98.195144

Wang, S., Ramírez, J. G., Jeffet, J., Bar-Ad, S., Huppert, D., & Schuller, I. K. (2017). Ultrafast photo-induced dynamics across the metal-insulator transition of VO2. Europhysics Letters, 118(2), Article 27005. https://doi.org/10.1209/0295-5075/118/27005

Weber, C., O’Regan, D. D., Hine, N. D. N., Payne, M. C., Kotliar, G., & Littlewood, P. B. (2012). Vanadium dioxide: A Peierls-Mott insulator stable against disorder. Physical Review Letters, 108(25), Article 256402. https://link.aps.org/doi/10.1103/PhysRevLett.108.256402

Yang, M., Yang, Y., Hong, B., Wang, L., Hu, K., Dong, Y., Xu, H., Huang, H., Zhao, J., Chen, H., Song, L., Ju, H., Zhu, J., Bao, J., Li, X., Gu, Y., Yang, T., Gao, X., Luo, Z., & Gao, C. (2016). Suppression of structural phase transition in VO2 by epitaxial strain in vicinity of metal-insulator transition. Scientific Reports, 6(1), Article 23119. https://doi.org/10.1038/srep23119

Zhong, X., Zhang, X., Gupta, A., & LeClair, P. (2011). Avalanche breakdown in microscale VO2 structures. Journal of Applied Physics, 110(8), Article 084516. https://doi.org/10.1063/1.3654121

Zimmers, A., Aigouy, L., Mortier, M., Sharoni, A., Wang, S., West, K. G., Ramírez, J. G., & Schuller, I. K. (2013). Role of thermal heating on the voltage induced insulator-metal transition in VO2. Physical Review Letters, 110(5), Article 056601. https://doi.org/10.1103/PhysRevLett.110.056601

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2026 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales

##plugins.themes.healthSciences.displayStats.downloads##

##plugins.themes.healthSciences.displayStats.noStats##