Inmunidad innata y funciones antimicrobianas del capullo durante la estivación de los peces pulmonados
PDF

Palabras clave

Peces pulmonados
Dipnoos
Estivación
Capullo
Inmunidad innata
Granulocitos
NETs

Cómo citar

García, L. F. (2025). Inmunidad innata y funciones antimicrobianas del capullo durante la estivación de los peces pulmonados. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales. https://doi.org/10.18257/raccefyn.3272

Societal impact


Resumen

El paso de los vertebrados de la vida acuática a la terrestre, ocurrido hace 400 millones de años durante el Devoniano, es uno de los eventos más importantes de la evolución animal. Los peces pulmonados, o dipnoos, son los peces vivos más cercanos a los tetrápodos terrestres y su estudio es fundamental para entender la terrestrialización y posterior radiación de los vertebrados a los múltiples ecosistemas terrestres. Estos peces poseen los genomas animales más grandes conocidos hasta ahora, con genes necesarios tanto para la vida acuática como para la terrestre. Los peces pulmonados de África (Protopterus sp.) y Suramérica (Lepidosiren paradoxa) tienen la capacidad de estivar en las temporadas de sequía y entrar en un estado de sopor en el que disminuyen muchas de sus actividades metabólicas y respiran aire. Durante la estivación están expuestos a múltiples microrganismos presentes en el lodo circundante, pero en el caso de los Protopterus sp., exhiben un capullo que actúa como una barrera inmunológica en la que se localizan granulocitos que desarrollan las trampas extracelulares de neutrófilos (NETs), donde quedan atrapados los microrganismos que son controlados por los múltiples compuestos antimicrobianos presentes en el capullo.

 

PDF

Referencias

Amelio, D. & Garofalo, F. (2020). The NOS/NO system in an example of extreme adaptation: The African lungfish. Journal of Thermal Biology, 90, 102594. https://doi.org/10.1016/j.jtherbio.2020.102594

Amelio, D. & Garofalo, F. (2023). Morpho-functional changes of lungfish Protopterus dolloi skin in the shift from freshwater to aestivating conditions. Comparative and Biochemical Physiology, Part B Biochemistry and Molecular Biology, 266, 110846. https://doi.org/10.1016/j.cbpb.2023.110846

Ashley-Ross, M. A., Hsieh, S. T., Gibb, A. C., Blob, R. W. (2013). Vertebrate Land Invasions–Past, Present, and Future: An Introduction to the Symposium. Integrative and Comparative Biology, 53(2), 192-196. https://doi.org/10.1093/icb/ict048

Bassi, M., Klein, W., Fernandes, M. N., Perry, S. F., Glass, M. L. (2005). Pulmonary Oxygen Diffusing Capacity of the South American Lungfish Lepidosiren paradoxa: Physiological Values by the Bohr Method. Physiological and Biochemical Zoology, 78(4), 560-569. https://doi.org/10.1086/430230

Bernardes, G., Serra, G. M., Silva, L., Martins, M. P., Perez, L. N., Molfetta, F. A., Santos, A. V., Schneider, M. P. C. (2024). Potential Involvement of the South American Lungfish Intelectin-2 in Innate-Associated Immune Modulation. International Journal of Molecular Sciences, 25(9), 4798. https://doi.org/10.3390/ijms25094798

Bielek, E. & Strauss, B. (1993). Ultrastructure of the granulocytes of the South American lungfish, Lepidosiren paradoxa: Morphogenesis and comparison to other leucocytes. Journal of Morphologyl, 218(1), 29-41. https://doi.org/10.1002/jmor.1052180103

Brinkmann, H., Denk, A., Zitzler, J., Joss, J. J., Meyer, A. (2004a). Complete mitochondrial genome sequences of the South American and the Australian lungfish: testing of the phylogenetic performance of mitochondrial data sets for phylogenetic problems in tetrapod relationships. Journal of Molecular Evolution, 59(6), 834-848. https://doi.org/10.1007/s00239-004-0122-8

Brinkmann, H., Venkatesh, B., Brenner, S., Meyer, A. (2004b). Nuclear protein-coding genes support lungfish and not the coelacanth as the closest living relatives of land vertebrates. Proceedings of the National Academy of Sciences U S A, 101(14), 4900-4905. https://doi.org/10.1073/pnas.0400609101

Bryce, T. H. (1906). Note on the Development of the Thymus Gland in Lepidosiren paradoxa. Journal Anatomy Physiology, 40(Pt 2), 91-99.

Casadei, E. & Salinas, I. (2023). Fighting pathogens in two battlefields: Antimicrobial defenses in the African lungfish. PLoS Pathogens 19(4), e1011302. https://doi.org/10.1371/journal.ppat.1011302

da Silva, G. S., Giusti, H., Sanchez, A. P., do Carmo, J. M., Glass, M. L. (2008). Aestivation in the South American lungfish, Lepidosiren paradoxa: effects on cardiovascular function, blood gases, osmolality and leptin levels. Respiratory Physiology and Neurobiology, 164(3), 380-385. https://doi.org/10.1016/j.resp.2008.08.009

da Silva, G. S. F., Ventura, D. A. D. N., Zena, L. A., Giusti, H., Glass, M. L., Klein, W. (2017). Effects of aerial hypoxia and temperature on pulmonary breathing pattern and gas exchange in the South American lungfish, Lepidosiren paradoxa. Comparative Biochemistry and Physiology Part A: Mol Integr Physiol, 207, 107-115. https://doi.org/10.1016/j.cbpa.2017.03.001

de Moraes, M. F., Holler, S., da Costa, O. T., Glass, M. L., Fernandes, M. N., Perry, S. F. (2005). Morphometric comparison of the respiratory organs in the South American lungfish Lepidosiren paradoxa (Dipnoi). Physiological and Biochemical Zoology, 78(4), 546-559. https://doi.org/10.1086/430686

Fishman, A. P., Pack, A. I., Delaney, R. G., Galante, R. J. (1986). Estivation in Protopterus. J Morphol, 190(S1), 237-248. https://doi.org/10.1002/jmor.1051900416

Glass, M. L., Amin-Naves, J., da Silva, G. S. F. (2009). Aestivation in Amphibians, Reptiles, and Lungfish. In M. L. Glass & S. C. Wood (Eds.), Cardio-Respiratory Control in Vertebrates: Comparative and Evolutionary Aspects (pp. 179-189). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-93985-6_8

Heimroth, R. D., Casadei, E., Benedicenti, O., Amemiya, C. T., Muñoz, P., Salinas, I. (2021). The lungfish cocoon is a living tissue with antimicrobial functions. Science Advances, 7(47), eabj0829. https://doi.org/doi:10.1126/sciadv.abj0829

Heimroth, R. D., Casadei, E., Salinas, I. (2018). Effects of Experimental Terrestrialization on the Skin Mucus Proteome of African Lungfish (Protopterus dolloi). Frontiers in Immunology 9. https://doi.org/10.3389/fimmu.2018.01259

Jordan, H. E. & Speidel, C. C. (1931). Blood formation in the African lungfish, under normal conditions and under conditions of prolonged estivation and recovery. J Morphol 51(2), 319-371. https://doi.org/10.1002/jmor.1050510203

Metcalfe, C. J., Filée, J., Germon, I., Joss, J., Casane, D. (2012). Evolution of the Australian Lungfish (Neoceratodus forsteri) Genome: A Major Role for CR1 and L2 LINE Elements. Molecular Biology and Evolution, 29(11), 3529-3539. https://doi.org/10.1093/molbev/mss159

Meyer, A., Schloissnig, S., Franchini, P., Du, K., Woltering, J. M., Irisarri, I., Wong, W. Y., Nowoshilow, S., Kneitz, S., Kawaguchi, A., Fabrizius, A., Xiong, P., Dechaud, C., Spaink, H. P., Volff, J.-N., Simakov, O., Burmester, T., Tanaka, E. M., Schartl, M. (2021). Giant lungfish genome elucidates the conquest of land by vertebrates. Nature, 590(7845), 284-289. https://doi.org/10.1038/s41586-021-03198-8

Nunan, B. L. C. Z., Silva, A. S., Wang, T., da Silva, G. S. F. (2019). Respiratory control of acid-base status in lungfish. Comparative Biochemistry and Physiology Part A: Mol Integr Physiol, 237, 110533. https://doi.org/10.1016/j.cbpa.2019.110533

Olena, A. (2021). Lungfish cocoons are alive, sort of. The Scientist. https://www.the-scientist.com/lungfish-cocoons-are-alive-sort-of-6943https://www.realclearscience.com/2021/11/18/lungfish_cocoons_are_alive_sort_of_804142.html 7

Orgeig, S. & Daniels, C. B. (1995). The evolutionary significance of pulmonary surfactant in lungfish (Dipnoi). American Journal of Respiratory Cell and Molecular Biology, 13(2), 161-166. https://doi.org/10.1165/ajrcmb.13.2.7626285

Otto, G. (2021). Giant genomes of lungfish. Nature Reviews Genetics, 22(4), 199-199. https://doi.org/10.1038/s41576-021-00337-9}}

Palominos, M. F., Bharadwaj, R., Tralka, C., Trang, K., Aka, D., Alami, M., Andrews, D., Bartlett, B. I., Golde, C., Liu, J., Le-Pedroza, M., Perrot, R., Seiter, B., Sparrow, C., Shapira, M., Martin, C. H. (2024). The West African lungfish secretes a living cocoon during aestivation with uncertain antimicrobial function. bioRxiv, 2024.07.05.602297. https://doi.org/10.1101/2024.07.05.602297

Perry, S. F., Euverman, R., Wang, T., Loong, A. M., Chew, S. F., Ip, Y. K., Gilmour, K. M. (2008). Control of breathing in African lungfish (Protopterus dolloi): a comparison of aquatic and cocooned (terrestrialized) animals. Respiratory Physiology & Neurobiology, 160(1), 8-17. https://doi.org/10.1016/j.resp.2007.06.015

Rauta, P. R., Nayak, B., Das, S. (2012). Immune system and immune responses in fish and their role in comparative immunity study: A model for higher organisms. Immunology Letters, 148(1), 23-33. https://doi.org/10.1016/j.imlet.2012.08.003

Ribeiro, M. L., DaMatta, R. A., Diniz, J. A., de Souza, W., do Nascimento, J. L., de Carvalho, T. M. (2007). Blood and inflammatory cells of the lungfish Lepidosiren paradoxa. Fish and Shellfish Immunology, 23(1), 178-187. https://doi.org/10.1016/j.fsi.2006.10.005

Sato, A., Sültmann, H., Mayer, W. E., Figueroa, F., Tichy, H., Klein, J. (1999). cDNA sequence coding for the α’-chain of the third complement component in the African lungfish. Scandinavian Journal of Immunology, 49(4), 367-375. https://doi.org/10.1046/j.1365-3083.1999.00512.x

Schartl, M., Woltering, J. M., Irisarri, I., Du, K., Kneitz, S., Pippel, M., Brown, T., Franchini, P., Li, J., Li, M., Adolfi, M., Winkler, S., de Freitas Sousa, J., Chen, Z., Jacinto, S., Kvon, E. Z., Correa de Oliveira, L. R., Monteiro, E., Baia Amaral, D.,…Meyer, A. (2024). The genomes of all lungfish inform on genome expansion and tetrapod evolution. Nature, 634, 96-103. https://doi.org/10.1038/s41586-024-07830-1

Sturla, M., Paola, P., Carlo, G., Angela, M. M., Maria, U. B. (2002). Effects of induced aestivation in Protopterus annectens: a histomorphological study. Journal of Experimental Zoology, 292(1), 26-31. https://doi.org/10.1002/jez.1139

Tacchi, L., Larragoite, Erin T., Muñoz, P., Amemiya, Chris T., Salinas, I. (2015). African Lungfish Reveal the Evolutionary Origins of Organized Mucosal Lymphoid Tissue in Vertebrates. Current Biology, 25(18), 2417-2424. https://doi.org/10.1016/j.cub.2015.07.066

Wang, K., Wang, J., Zhu, C., Yang, L., Ren, Y., Ruan, J., Fan, G., Hu, J., Xu, W., Bi, X., Zhu, Y., Song, Y., Chen, H., Ma, T., Zhao, R., Jiang, H., Zhang, B., Feng, C., Yuan, Y.,…Wang, W. (2021). African lungfish genome sheds light on the vertebrate water-to-land transition. Cell, 184(5), 1362-1376.e1318. https://doi.org/10.1016/j.cell.2021.01.047

Yokobori, S., Hasegawa, M., Ueda, T., Okada, N., Nishikawa, K., Watanabe, K. (1994). Relationship among coelacanths, lungfishes, and tetrapods: a phylogenetic analysis based on mitochondrial cytochrome oxidase I gene sequences. Journal of Molecular Evolution, 38(6), 602-609. https://doi.org/10.1007/BF00175880

Zhang, R., Liu, Q., Pan, S., Zhang, Y., Qin, Y., Du, X., Yuan, Z., Lu, Y., Song, Y., Zhang, M., Zhang, N., Ma, J., Zhang, Z., Jia, X., Wang, K., He, S., Liu, S., Ni, M., Liu, X.,…Fan, G. (2023). A single-cell atlas of West African lungfish respiratory system reveals evolutionary adaptations to terrestrialization. Nature Communications, 14(1), 5630. https://doi.org/10.1038/s41467-023-41309-3

Zhu, M. & Yu, X. (2002). A primitive fish close to the common ancestor of tetrapods and lungfish. Nature, 418(6899), 767-770. https://doi.org/10.1038/nature00871

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2025 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales

##plugins.themes.healthSciences.displayStats.downloads##

##plugins.themes.healthSciences.displayStats.noStats##