Resumen
En este paper presentamos una búsqueda sistemática de compuestos binarios que cristalizan en el grupo espacial quiral P6222 con el objetivo de identificar nuevos metales Kagome quirales. Mediante la combinación de un análisis de posiciones de Wyckoff con radios iónicos de Shannon y estados de oxidación, establecemos correlaciones entre el tamaño atómico, la valencia y la ocupación preferencial de sitios cristalográficos, particularmente del sitio 3d que forma las redes Kagome. El análisis de más de 300 estructuras revela que los cationes de menor tamaño tienden a ocupar preferentemente las posiciones 3d d, mientras que los iones de mayor tamaño se ubican en sitios periféricos (3c, 6j). Los prototipos basados en calcio e iridio exhiben estados magnéticos diferenciados y respuestas contrastantes al acoplamiento espín–órbita, a pesar de compartir la misma simetría cristalina, lo cual evidencia el papel determinante de la coordinación local en la topología electrónica resultante. Estos hallazgos proporcionan principios de diseño fundamentales para la síntesis dirigida de nuevos materiales Kagome quirales con propiedades comparables a las de Fe3Sn2 y CoSn.
Referencias
Bousquet, E., Fava, M., Romestan, Z., Gómez-Ortiz, F., McCabe, E. E., & Romero, A. H. (2024). Structural chirality and related properties in the periodic inorganic solids: Review and perspectives. Journal of Physics: Condensed Matter, 37(16), 163004.
Chen, C., & Ong, S. P. (2022). A universal graph deep learning interatomic potential for the periodic table. Nature Computational Science, 2(11), 718–728.
Chen, H., Wu, W., Yang, S. A., Li, X., & Zhang, L. (2019). Chiral phonons in kagome lattices. Physical Review B, 100(9), 094303.
Choudhary, K., Garrity, K. F., Reid, A. C., DeCost, B., Biacchi, A. J., Hight Walker, A. R., Trautt, Z., Hattrick-Simpers, J., Kusne, A., Centrone, A., Davydov, A., Jiang, J., Pachter, R., Cheon, G., Reed, E., Agrawal, A., Qian, X., Sharma, V., Rabe, K., & Tavazza, F. (2020). The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design. npj Computational Materials, 6(1), 173.
Choudhary, K., Wines, D., Li, K., Garrity, K. F., Gupta, V., Romero, A. H., Krogel, J. T., Saritas, K., Fuhr, A., Ganesh, P., Kent, P. R. C., Yan, K., Lin, Y., Ji, S., Blaiszik, B., Reiser, P., Friedrich, P., Agrawal, A., Tiwary, P., & Tavazza, F. (2024). JARVIS-leaderboard: A large-scale benchmark of materials design methods. npj Computational Materials, 10(1), 93.
Curtarolo, S., Setyawan, W., Hart, G. L., Jahnatek, M., Chepulskii, R. V., Taylor, R. H., Wang, S., Xue, J., Yang, K., Levy, O., Mehl, M. J., Stokes, H. T., Demchenko, D. O., & Morgan, D. (2012). AFLOW: An automatic framework for high-throughput materials discovery. Computational Materials Science, 58, 218–226.
Elliott, R. J. (1961). Phenomenological discussion of magnetic ordering in the heavy rare-earth metals. Physical Review, 124(2), 346–353.
Fredericks, S., Parrish, K., Sayre, D., & Zhu, Q. (2021). PyXtal: A Python library for crystal structure generation and symmetry analysis. Computer Physics Communications, 261, 107810.
Fu, J., Han, Y., Wang, Y., Wu, H., Yang, Y., Du, R., Zhao, J., Zhang, H., Yu, J., Wang, Z., & Hu, J. (2025). Ultrafast coherent phonon dynamics in the kagome magnet GdV₆Sn₆. Physical Review B, 111(5), 054308.
Gutiérrez, C., Torres-Amaris, D., González-Hernández, R., Romero, A. H., & García-Castro, A. (2025). Chiral symmetry and magnetism in a 3D kagome lattice: RPt₂Bb (R = La and Nd) prototype crystals. Physical Review B, 112, 035109.
Hasan, M. Z., Chang, G., Belopolski, I., Bian, G., Xu, S.-Y., & Yin, J.-X. (2021). Weyl, Dirac and high-fold chiral fermions in topological quantum matter. Nature Reviews Materials, 6(9), 784–803.
Hasan, M. Z., Xu, S.-Y., Belopolski, I., & Huang, S.-M. (2017). Discovery of Weyl fermion semimetals and topological Fermi arc states. Annual Review of Condensed Matter Physics, 8(1), 289–309.
Herath, U., Tavadze, P., He, X., Bousquet, E., Singh, S., Muñoz, F., & Romero, A. H. (2020). PyProcar: A Python library for electronic structure pre/post-processing. Computer Physics Communications, 251, 107080.
Hu, Y., Ma, J., Li, Y., Jiang, Y., Gawryluk, D. J., Hu, T., Teyssier, J., Multian, V., Yin, Z., Xu, S., Shin, S., Plokhikh, I., Han, X., Plumb, N. C., Liu, Y., Yin, J.-X., Guguchia, Z., Zhao, Y., Schnyder, A. P., Wang, N., & Shi, M. (2024). Phonon promoted charge density wave in topological kagome metal ScV₆Sn₆. Nature Communications, 15(1), 1658.
Ivantchev, S., Kroumova, E., Madariaga, G., Pérez-Mato, J., & Aroyo, M. (2000). Subgroupgraph: A computer program for analysis of group–subgroup relations between space groups. Journal of Applied Crystallography, 33(4), 1190–1191.
Jain, A., Montoya, J., Dwaraknath, S., Zimmermann, N. E., Dagdelen, J., Horton, M., Huck, P., Winston, D., Cholia, S., Ong, S. P., & Persson, K. (2020). The Materials Project: Accelerating materials design through theory-driven data and tools. In Handbook of Materials Modeling: Methods: Theory and Modeling (pp. 1751–1784). Springer.
Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., & Persson, K. (2013). Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials, 1(1), 011002.
Kaplan, T. (1961). Some effects of anisotropy on spiral spin configurations with application to rare-earth metals. Physical Review, 124(2), 329–335.*
Kazeev, N., Nong, W., Romanov, I., Zhu, R., Ustyuzhanin, A., Yamazaki, S., & Hippalgaonkar, K. (2025). Wyckoff transformer: Generation of symmetric crystals. arXiv preprint arXiv:2503.02407.
Kresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1), 15-50.
Kresse, G., & Hafner, J. (1993). Ab initio molecular dynamics for liquid metals. Physical Review B, 47(1), 558.
Kresse, G., & Hafner, J. (1994). Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. Journal of Physics: Condensed Matter, 6(40), 8245.
Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758.
Laboratory, L. A. N. (2025). Periodic table of elements: LANL [Accessed: 2025-07-10].
Lang, L., Tavadze, P., Tellez, A., Bousquet, E., Xu, H., Muñoz, F., Vasquez, N., Herath, U., & Romero, A. H. (2024). Expanding pyprocar for new features, maintainability, and reliability. Computer Physics Communications, 297, 109063.
Li, J., Yao, Q., Wu, L., Hu, Z., Gao, B., Wan, X., & Liu, Q. (2022). Designing light-element materials with large effective spin-orbit coupling. Nature Communications, 13(1), 919.
Liu, M., & Meng, S. (2024). Recent breakthrough in AI-driven materials science: Tech giants introduce groundbreaking models. arXiv preprint arXiv:2402.05799.
Liu, Z., Li, M., Wang, Q., Wang, G., Wen, C., Jiang, K., Lu, X., Yan, S., Huang, Y., Shen, D., Yin, J. X., Wang, Z., Yin, Z., Lei, H., & Wang, S. (2020). Orbital-selective Dirac fermions and extremely flat bands in frustrated kagome-lattice metal CoSn. Nature Communications, 11(1), 4002.
Mekata, M. (2003). Kagome: The story of the basketweave lattice. Physics Today, 56(2), 12-13.
Merchant, A., Batzner, S., Schoenholz, S. S., Aykol, M., Cheon, G., & Cubuk, E. D. (2023). Scaling deep learning for materials discovery. Nature, 624(7990), 80-85.
Momma, K., & Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Applied Crystallography, 44(6), 1272-1276.
Nakatsuji, S., Kiyohara, N., & Higo, T. (2015). Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature, 527(7577), 212-215.
Negi, P., Medhi, K., Pancholi, A., & Roychowdhury, S. (2025). Magnetic kagome materials: Bridging fundamental properties and topological quantum applications. Materials Horizons.
Newnham, R. E. (2004). Properties of materials: Anisotropy, symmetry, structure. OUP Oxford.
Ortiz, B. R., Teicher, S. M., Hu, Y., Zuo, J. L., Sarte, P. M., Schueller, E. C., Abeykoon, A. M., Krogstad, M. J., Rosenkranz, S., Osborn, R., Seshadri, R., Balents, L., He, J., & Wilson, S. D. (2020). CsV₃Sb₅: A ℤ₂ topological kagome metal with a superconducting ground state. Physical Review Letters, 125(24), 247002.
Powell, R. C., & Powell, R. C. (2010). Tensor properties of crystals. Symmetry, Group Theory, and the Physical Properties of Crystals, 55-78.
Prakash, A., & Wei, T.-C. (2014). Ground states of 1D symmetry-protected topological phases and their utility as resource states for quantum computation. arXiv preprint arXiv:1410.0974.
Saini, H. (2023). Development of ab initio characterization tool for Weyl semimetals and thermodynamic stability of kagome Weyl semimetals [Doctoral dissertation].
Schmidt, J., Cerqueira, T. F., Romero, A. H., Loew, A., Jäger, F., Wang, H.-C., Botti, S., & Marques, M. A. (2024). Improving machine-learning models in materials science through large datasets. Materials Today Physics, 48, 101560.
Tasci, E., de la Flor, G., Orobengoa, D., Capillas, C., Perez-Mato, J., & Aroyo, M. (2012). An introduction to the tools hosted in the Bilbao Crystallographic Server. EPJ Web of Conferences, 22, 00009.
Toulouse, G. (2008). The frustration model. In Modern trends in the theory of condensed matter: Proceedings of the XVI Karpacz Winter School of Theoretical Physics, February 19–March 3, 1979 Karpacz, Poland (pp. 195-203). Springer.
Wang, Q., Lei, H., Qi, Y., & Felser, C. (2024). Topological quantum materials with kagome lattice. Accounts of Materials Research, 5(7), 786-796.
Wannier, G. (1950). Antiferromagnetism. The triangular Ising net. Physical Review, 79(2), 357.
Xie, T., & Grossman, J. C. (2018). Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Physical Review Letters, 120(14), 145301.
Ye, L., Kang, M., Liu, J., Von Cube, F., Wicker, C. R., Suzuki, T., Jozwiak, C., Bostwick, A., Rotenberg, E., Bell, D. C., Fu, L., Comin, R., & Checkelsky, J. G. (2018). Massive Dirac fermions in a ferromagnetic kagome metal. Nature, 555(7698), 638–642. https://doi.org/10.1038/nature25987
Yin, J.-X., Lian, B., & Hasan, M. Z. (2022). Topological kagome magnets and superconductors. Nature, 612(7941), 647–657. https://doi.org/10.1038/s41586-022-05546-3
Yoshimori, A. (1959). A new type of antiferromagnetic structure in the rutile type crystal. Journal of the Physical Society of Japan, 14(6), 807–821. https://doi.org/10.1143/JPSJ.14.807
You, J.-Y., Zhou, X., Hou, T., Yahyavi, M., Jin, Y., Hung, Y.-C., Singh, B., Zhang, C., Yin, J.-X., Bansil, A., & Chang, G. (2023). Topological chiral kagome lattice. arXiv preprint arXiv:2309.00217. https://arxiv.org/abs/2309.00217
Zhang, C.-L., Liang, T., Bahramy, M., Ogawa, N., Kocsis, V., Ueda, K., Kaneko, Y., Kriener, M., & Tokura, Y. (2021). Berry curvature generation detected by Nernst responses in ferroelectric Weyl semimetal. Proceedings of the National Academy of Sciences, 118(44), e2111855118. https://doi.org/10.1073/pnas.2111855118
Zhou, L., Yang, F., Zhang, S., & Zhang, T. (2024). Chemical rules for stacked kagome and honeycomb topological semimetals. Advanced Materials, 36(15), 2309803. https://doi.org/10.1002/adma.202309803
Zhu, R., Nong, W., Yamazaki, S., & Hippalgaonkar, K. (2024). Wycryst: Wyckoff inorganic crystal generator framework. Matter, 7(10), 3469–3488. https://doi.org/10.1016/j.matt.2024.07.012

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2025 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales

