Estudio de las propiedades estructurales y ópticas de películas delgadas de CuInSe₂ obtenidas mediante pulverización catódica por radiofrecuencia en función de la temperatura de depósito
PDF (Inglés)

Palabras clave

Seleniuros de cobre e indio
Película delgada
Espectroscopia de fotoelectrones de rayos X
Espectroscopia Raman
Difracción de rayos X
Optoelectrónica
Fotovoltaica

Cómo citar

Montes-Monsalve, J., Bernal-Correa, R., Morales-Acevedo, A., & Pulzara-Mora, Álvaro. (2025). Estudio de las propiedades estructurales y ópticas de películas delgadas de CuInSe₂ obtenidas mediante pulverización catódica por radiofrecuencia en función de la temperatura de depósito. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 49(192), 532-545. https://doi.org/10.18257/raccefyn.3225

Societal impact


Resumen

La formación de una capa superficial deficiente en cobre es una característica común en las películas delgadas de CuInSe₂, especialmente en procesos de deposición que implican múltiples etapas, como el tratamiento térmico y la pos-selenización. Estudiamos aquí la deposición de películas delgadas de CuInSe₂ mediante pulverización catódica por magnetrón de radiofrecuencia a partir de un blanco monofásico, variando la temperatura del sustrato entre 50 y 400 °C. La espectroscopía de fotoelectrones de rayos X (XPS) confirmó la presencia persistente de una capa superficial pobre en Cu en todas las temperaturas de deposición. Las películas depositadas por debajo de 200 °C resultaron amorfas y con deficiencia de cobre, mientras que a 200 °C y temperaturas superiores las películas mostraron una transición hacia una estructura policristalina tipo calcopirita, como lo evidenció la difracción de rayos X (XRD). Los tamaños de cristalito para las películas policristalinas depositadas a 200 °C y 400 °C fueron de aproximadamente 10–12 nm. El análisis mediante espectroscopía de dispersión de energía de rayos X (EDS) reveló una disminución progresiva en el contenido de cobre, de ~20 % at. entre los 50 °C y los 200 °C a ~16 % at. a los 400 °C, en tanto que el contenido de indio se mantuvo casi constante y el de selenio aumentó ligeramente de 50 % at. a 56 % at. con el incremento de la temperatura. La espectroscopía UV-Vis mostró que el valor de la banda prohibida óptica (Eg) disminuyó de 1,2 eV a 50 °C y 1,15 eV a 100 °C hasta aproximadamente 0,95–0,94 eV a 200 °C y 400 °C. Los resultados aportan información relevante sobre el papel de la temperatura del sustrato en la deposición de películas delgadas de CuInSe₂, lo que contribuye a los esfuerzos actuales por mejorar su desempeño en aplicaciones fotovoltaicas y optoelectrónicas.

PDF (Inglés)

Referencias

Chandran, R., & Mallik, A. (2018). Electrodeposition of near stoichiometric CuInSe₂ thin films for photovoltaic applications. IOP Conference Series: Materials Science and Engineering, 338, 012018. https://doi.org/10.1088/1757-899X/338/1/012018

Chauhan, S. M., Chaki, S. H., Deshpande, M. P., Malek, T. J., & Tailor, J. P. (2018). Thermal decomposition study on CuInSe₂ single crystals. International Journal of Thermophysics, 39, 18. https://doi.org/10.1007/s10765-017-2341-4

Cheng, K. W., Jhang, H. J., Li, C. T., & Ho, K. C. (2017). Solution-growth-synthesized Cu(In,Ga)Se₂ nanoparticles in ethanol bath for the applications of dye-sensitized solar cell and photoelectrochemical reaction. Journal of the Taiwan Institute of Chemical Engineers, 74, 136–145. https://doi.org/10.1016/j.jtice.2017.02.010

Cheng, Y. S., Wang, N. F., Tsai, Y. Z., Lin, J. J., & Houng, M. P. (2017). Investigation of CuInSe₂ nanowire arrays with core–shell structure electrodeposited at various duty cycles into anodic alumina templates. Applied Surface Science, 396, 631–636. https://doi.org/10.1016/j.apsusc.2016.10.207

Fan, P., Liang, G. X., Cai, X. M., Zheng, Z. H., & Zhang, D. P. (2011). The influence of annealing temperature on the structural, electrical and optical properties of ion beam sputtered CuInSe₂ thin films. Thin Solid Films, 519, 5348–5352. https://doi.org/10.1016/j.tsf.2011.02.036

Green, M. A., Dunlop, E. D., Yoshita, M., Kopidakis, N., Bothe, K., Siefer, G., Hao, X., & Jiang, J. Y. (2024). Solar cell efficiency tables (Version 60). Progress in Photovoltaics: Research and Applications, 33, 3–15. https://doi.org/10.1002/pip.3867

Hodes, G., & Cahen, D. (1986). Electrodeposition of CuInSe₂ and CuInS₂ films. Solar Cells, 16, 245–254. https://doi.org/10.1016/0379-6787(86)90088-8

Ishizuka, S., Nishinaga, J., Beppu, K., Maeda, T., Aoyagi, F., Wada, T., Yamada, A., Chantana, J., Nishimura, T., Minemoto, T., Monirul Islam, M., Sakurai, T., & Terada, Y. (2022). Physical and chemical aspects at the interface and in the bulk of CuInSe₂-based thin-film photovoltaics. Journal of Physical Chemistry Chemical Physics, 24, 1262. https://doi.org/10.1039/D1CP04495H

Jošt, M., Köhnen, E., Al-Ashouri, A., Bertram, T., Tomšič, Š., Magomedov, A., Kasparavicius, E., Kodalle, T., Lipovšek, B., Getautis, V., Schlatmann, R., Kaufmann, C. A., Albrecht, S., & Topič, M. (2022). Perovskite/CIGS tandem solar cells: From certified 24.2% toward 30% and beyond. ACS Energy Letters, 7, 1298–1307. https://doi.org/10.1021/acsenergylett.2c00274

Kim, S. T., Yoo, J. S., Lee, M. W., Jung, J. W., & Jang, J. H. (2022). CuInSe₂-based near-infrared photodetector. Applied Sciences, 12, 92. https://doi.org/10.3390/app12010092

Li, L., Chen, Y., Lv, Z., Yin, N. Q., Li, S., Wang, K., & Li, P. (2022). In situ one-step synthesis of CuInS₂ thin films with different morphologies and their optical properties. Journal of Materials Science: Materials in Electronics, 33, 2995–3001. https://doi.org/10.1007/s10854-021-07499-6

Li, L., Li, M., & Li, P. (2021). Cu(In,Ga)S₂ nanowire arrays: Self-templated synthesis and application for photoelectrochemical water splitting. Materials Characterization, 172, 110900. https://doi.org/10.1016/j.matchar.2021.110900

Mahraj, I., & Ptok, A. (2024). First-principles investigations of structural, electronic and optical properties of ternary chalcopyrite semiconductors CuInY₂ (Y = S, Se and Te). Computational Condensed Matter, 40, e00935. https://doi.org/10.1016/j.cocom.2024.e00935

Malitckaya, M., Komsa, H., Havu, V., & Puska, M. J. (2017). Effect of alkali metal atom doping on the CuInSe₂-based solar cell absorber. The Journal of Physical Chemistry C, 121(29), 15516–15528. https://doi.org/10.1021/acs.jpcc.7b03083

Maeda, T., Gong, W., & Wada, T. (2016). Crystallographic and optical properties and band structures of CuInSe₂, CuIn₃Se₅, and CuIn₅Se₈ phases in Cu-poor Cu₂Se–In₂Se₃ pseudo-binary system. Japanese Journal of Applied Physics, 55, 04ES15. https://doi.org/10.7567/JJAP.55.04ES15

Migliorato, P., Shay, J. L., & Kasper, H. M. (1975). Electrical properties and luminescence of CuInSe₂. Journal of Electronic Materials, 4, 209–222. https://doi.org/10.1007/BF02655402

Muzzillo, C. P., Li, J. V., Mansfield, L. M., Ramanathan, K., & Anderson, T. J. (2018). Surface and bulk effects of K in highly efficient Cu₁₋ₓKₓInSe₂ solar cells. Solar Energy Materials and Solar Cells, 185, 45–53. https://doi.org/10.1016/j.solmat.2018.05.013

Nanayakkara, S. U., Horowitz, K., Kanevce, A., Woodhouse, M., & Basore, P. (2017). Evaluating the economic viability of CdTe/CIS and CIGS/CIS tandem photovoltaic modules. Progress in Photovoltaics, 25, 271–279. https://doi.org/10.1002/pip.2849

Neumann, H. (1986). Optical properties and electronic band structure of CuInSe₂. Solar Cells, 16, 317–333. https://doi.org/10.1016/0379-6787(86)90092-X

Paulson, P. D., Birkmire, R. W., & Shafarman, W. N. (2003). Optical characterization of CuIn₁₋ₓGaₓSe₂ alloy thin films by spectroscopic ellipsometry. Journal of Applied Physics, 94, 879–888. https://doi.org/10.1063/1.1581345

Sadono, A., Hino, M., Nakada, K., & Yamada, A. (2018). Effect of an additional Cu-deficient layer deposition on alkali treated Cu(In,Ga)Se₂ solar cells deposited at low temperature. Solar Energy Materials and Solar Cells, 184, 67–72. https://doi.org/10.1016/j.solmat.2018.04.030

Sharma, S., Khan, K., Soni, M., Ahuja, U., Soni, A., & Sahariya, J. (2023). Investigation of electronic and optical properties of alkali atom doped CuInSe₂ using density functional theory. Physica Scripta, 98, 085927. https://doi.org/10.1088/1402-4896/ace489

Sobol, P. E., Nelson, A. J., Schwerdtfeger, C. R., Stickle, W. F., & Moulder, J. F. (2021). Single crystal CuInSe₂ analysis by high resolution XPS. Surface Science Spectra, 1, 393–397. https://doi.org/10.1116/1.1247638

Solhtalab, N., Mohammadi, M. H., Eskandari, M., & Fathi, D. (2022). Efficiency improvement of half-tandem CIGS/perovskite solar cell by designing nano-prism nanostructure as the controllable light trapping. Energy Reports, 8, 1298–1308. https://doi.org/10.1016/j.egyr.2021.12.038

Stanbery, B. J., Abou-Ras, D., Yamada, A., & Mansfield, L. (2021). CIGS photovoltaics: Reviewing an evolving paradigm. Journal of Physics D: Applied Physics, 55, 173001. https://doi.org/10.1088/1361-6463/ac4363

Thomere, A., Barreau, N., Stephant, N., Guillot-Deudon, C., Gautron, E., Caldes, M. T., & Lafond, A. (2022). Formation of Cu(In,Ga)S₂ chalcopyrite thin films following a 3-stage co-evaporation process. Solar Energy Materials and Solar Cells, 237, 111563. https://doi.org/10.1016/j.solmat.2021.111563

Torres-Jaramillo S., Morales-Acevedo A., Bernal-Correa R., Pulzara-Mora A. (2018). Optimizing two and four-terminal CuGaSe₂/CuInGaSe₂ tandem solar cells for achieving high efficiencies. Optik, 175, 71-77. https://doi.org/10.1016/J.IJLEO.2018.08.124

Wang C., Zhuang D., Zhao M., Li Y., Tong H., Wang H., Wei J., Gong Q. (2022). High-performance sub-micron CIGSSe solar cells optimized for sodium doping by adjusting diffusion barriers. Chemical Engineering Journal, 439, 135713. https://doi.org/10.1016/J.CEJ.2022.135713

Wanger C. D., Riggs W. M., Davis L. E., Moulder J. F., Muilenberg G. E. (1979). Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corp., Physical Electronics Division, Eden Prairie. https://doi.org/10.1002/SIA.740030412

Wi J.H., Han W.S., Lee W.J., Cho D.H., Yu H.J., Kim C.W., Jeong C., Yun J.H., Kim C.I., Chung Y.D. (2018). Spectral Response of CuGaSe₂/Cu(In,Ga)Se₂ Monolithic Tandem Solar Cell with Open-Circuit Voltage over 1 V. IEEE Journal of Photovoltaics, 8, 840-848. https://doi.org/10.1109/JPHOTOV.2018.2799168

Xu C.M., Xu X.L., Xu J., Yang X.J., Zuo J., Kong N., Huang W.H., Liu H.T. (2004). Composition dependence of the Raman A1 mode and additional mode in tetragonal Cu–In–Se thin films. Semiconductor Science and Technology, 19, 1201. https://doi.org/10.1088/0268-1242/19/10/006

Yan Z., Ji X, Li M., Mi Y. (2011). Effect of substrate temperature on properties of CuInSe₂ thin films deposited by magnetron sputtering. Advanced Materials Research, 287-290, 2131-2135. https://doi.org/10.4028/www.scientific.net/AMR.287-290.2131

Zhang S.B., Wei S., Zunger A. (1998). Defect physics of the CuInSe₂ chalcopyrite semiconductor. Physical Review B, 57, 9642-9656. https://doi.org/10.1103/PhysRevB.57.9642

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2025 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales

##plugins.themes.healthSciences.displayStats.downloads##

##plugins.themes.healthSciences.displayStats.noStats##