Resumen
Presentamos aquí una ruta verde de síntesis por coprecipitación de nanocompuestos de oxidos de cobre y de hierro funcionalizados con plata (Cu2O/CuO/Fe2O3@Ag) utilizando extracto de guayaba (Psidium guajava) como agente reductor y estabilizador. La novedad de este enfoque radica en el uso inexplorado de la guayaba, una biomasa rica en fitoquímicos ampliamente disponible, para producir nanocompuestos multifuncionales con propiedades mejoradas. Los análisis estructurales y morfológicos (XRD, FTIR, SEM, TEM) confirmaron la presencia de fases cristalinas de Fe2O3, Cu2O, CuO y Ag, además de morfologías similares a nanoescamas y tamaños de partícula nanométricos. La caracterización magnética (VSM) reveló el cambio del comportamiento paramagnético en muestras no funcionalizadas a un ferromagnetismo débil con coercitividad y magnetización reducidas tras la incorporación de plata. Los ensayos antibacterianos demostraron que los nanocompuestos funcionalizados exhibían fuertes efectos inhibidores contra el patógeno resistente a múltiples fármacos Klebsiella pneumoniae, logrando una inhibición sustancial del crecimiento a 500 ppm. Estos hallazgos destacan el potencial del extracto de la guayaba como precursor sostenible para la síntesis biogénica de nanocompuestos de los óxidos de Fe y Cu funcionalizados con plata, lo que ofrece una ruta prometedora para la obtención de nanomateriales respetuosos del medio ambiente con aplicaciones en campos biomédicos y ambientales.
Referencias
Abd El-Sadek, M. S., Wasly, H. S., Batoo, K. M. (2019). X-ray peak profile analysis and optical properties of CdS nanoparticles synthesized via the hydrothermal method. Applied Physics A, 125(4), 283. https://doi.org/10.1007/s00339-019-2576-y
Akin, S., Sadegh, F., Turan, S., Sonmezoglu, S. (2019). Inorganic CuFeO2 Delafossite Nanoparticles as Effective Hole Transport Materials for Highly Efficient and Long-Term Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 11(48), 45142-45149. https://doi.org/10.1021/acsami.9b14740
Aksu Demirezen, D., Yıldız, Y. Ş., Yılmaz, Ş., Demirezen Yılmaz, D. (2019). Green synthesis and characterization of iron oxide nanoparticles using Ficus carica (common fig) dried fruit extract. Journal of Bioscience and Bioengineering, 127(2), 241-245. https://doi.org/10.1016/j.jbiosc.2018.07.024
Al-Saeedi, S. I., Al-Senani, G. M., Abd-Elkader, O. H., Deraz, N. M. (2021). One Pot Synthesis, Surface and Magnetic Properties of Cu2O/Cu and Cu2O/CuO Nanocomposites. Crystals, 11(7), Article 7. https://doi.org/10.3390/cryst11070751
Al-Senani, G. M., Al-Saeedi, S. I., Al-Kadhi, N. S., Abd-Elkader, O. H., Deraz, N. M. (2022). Green Synthesis and Pinning Behavior of Fe-Doped CuO/Cu2O/Cu4O3 Nanocomposites. Processes, 10(4), Article 4. https://doi.org/10.3390/pr10040729
Altammar, K. A. (2023). A review on nanoparticles: characteristics, synthesis, applications, and challenges. Frontiers in Microbiology, 14, 1155622. https://doi.org/10.3389/fmicb.2023.1155622
Amin, N. H., Ali, L. I., El-Molla, S. A., Ebrahim, A. A., Mahmoud, H. R. (2016). Effect of Fe2O3 precursors on physicochemical and catalytic properties of CuO/Fe2O3 system. Arabian Journal of Chemistry, 9, S678-S684. https://doi.org/10.1016/j.arabjc.2011.07.026
Antonoglou, O., Lafazanis, K., Mourdikoudis, S., Vourlias, G., Lialiaris, T., Pantazaki, A., Dendrinou-Samara, C. (2019). Biological relevance of CuFeO2 nanoparticles: Antibacterial and anti-inflammatory activity, genotoxicity, DNA and protein interactions. Materials Science and Engineering: C, 99, 264-274. https://doi.org/10.1016/j.msec.2019.01.112
Apte, S. K., Naik, S. D., Sonawane, R. S., Kale, B. B., Baeg, J. O. (2007). Synthesis of Nanosize-Necked Structure α- and γ-Fe2O3 and its Photocatalytic Activity. Journal of the American Ceramic Society, 90(2), 412-414. https://doi.org/10.1111/j.1551-2916.2006.01424.x
Arsiya, F., Sayadi, M. H., Sobhani, S. (2017). Green synthesis of palladium nanoparticles using Chlorella vulgaris. Materials Letters, 186, 113-115. https://doi.org/10.1016/j.matlet.2016.09.101
Atchaya, S. & Meena Devi, J. (2024). Experimental Investigation on Structural, Optical, Electrical and Magnetic Properties of Copper Oxide Nanoparticles. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 94(1), 153-160. https://doi.org/10.1007/s40010-023-00855-7
Ayala, A. B. (2017). Agrobiodiversity and nutrition in Boyacá, Colombia: a historic relationship of imbalance. Cultura Científica, 15, Article 15.
Batsaikhan, E., Lee, C.-H., Hsu, H., Wu, C.-M., Peng, J.-C., Ma, M.-H., Deleg, S., Li, W.-H. (2020). Largely Enhanced Ferromagnetism in Bare CuO Nanoparticles by a Small Size Effect. ACS Omega, 5(8), 3849-3856. https://doi.org/10.1021/acsomega.9b02913
Bhavyasree, P. G. & Xavier, T. S. (2020). Green synthesis of Copper Oxide/Carbon nanocomposites using the leaf extract of Adhatoda vasica Nees, their characterization and antimicrobial activity. Heliyon, 6(2), e03323. https://doi.org/10.1016/j.heliyon.2020.e03323
Bhushan, M., Kumar, Y., Periyasamy, L., Viswanath, A. K. (2019). Study of synthesis, structural, optical and magnetic characterizations of iron/copper oxide nanocomposites: A promising novel inorganic antibiotic. Materials Science and Engineering: C, 96, 66-76. https://doi.org/10.1016/j.msec.2018.11.009
Buarki, F., AbuHassan, H., Al Hannan, F., Henari, F. Z. (2022). Green Synthesis of Iron Oxide Nanoparticles Using Hibiscus rosa sinensis Flowers and their Antibacterial Activity. Journal of Nanotechnology, 2022, e5474645. https://doi.org/10.1155/2022/5474645
Buledi, J. A., Pato, A. H., Kanhar, A. H., Solangi, A. R., Batool, M., Ameen, S., Palabiyik, I. M. (2021). Heterogeneous kinetics of CuO nanoflakes in simultaneous decolorization of Eosin Y and Rhodamine B in aqueous media. Applied Nanoscience, 11, 1241-1256. https://doi.org/10.1007/s13204-021-01685-y
Cahyana, A. H., Liandi, A. R., Yulizar, Y., Romdoni, Y., Wendari, T. P. (2021). Green synthesis of CuFe2O4 nanoparticles mediated by Morus alba L. leaf extract: Crystal structure, grain morphology, particle size, magnetic and catalytic properties in Mannich reaction. Ceramics International, 47(15), 21373-21380. https://doi.org/10.1016/j.ceramint.2021.04.146
Castañeda-Mendoza, M., Parra-Vargas, C. A., Rincón-Joya, M., Chiquito, A. J., Raba-Páez, A. M. (2025). Gas Sensor Properties of (CuO/WO3)-CuWO4 Heterostructured Nanocomposite Materials. Materials, 18(12), 2896. https://doi.org/10.3390/ma18122896
Charbgoo, F., Ahmad, M. B., Darroudi, M. (2017). Cerium oxide nanoparticles: green synthesis and biological applications. International Journal of Nanomedicine, 12, 1401-1413. https://doi.org/10.2147/IJN.S124855
Chitradevi, T., Lenus, A. J., Jaya, N. V. (2019). Structure, morphology and luminescence properties of sol-gel method synthesized pure and Ag-doped ZnO nanoparticles. Materials Research Express, 7(1), 015011. https://doi.org/10.1088/2053-1591/ab5c53
Chokkareddy, R. & Redhi, G. G. (2018). Green Synthesis of Metal Nanoparticles and its Reaction Mechanisms. In Green Metal Nanoparticles (pp. 113-139). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119418900.ch4
Effah, C. Y., Sun, T., Liu, S., Wu, Y. (2020). Klebsiella pneumoniae: an increasing threat to public health. Annals of Clinical Microbiology and Antimicrobials, 19(1), 1. https://doi.org/10.1186/s12941-019-0343-8
El-Boubbou, K., Ali, R., Bahhari, H. M., AlSaad, K. O., Nehdi, A., Boudjelal, M., AlKushi, A. (2016). Magnetic Fluorescent Nanoformulation for Intracellular Drug Delivery to Human Breast Cancer, Primary Tumors, and Tumor Biopsies: Beyond Targeting Expectations. Bioconjugate Chemistry, 27(6), 1471-1483. https://doi.org/10.1021/acs.bioconjchem.6b00257
Fakhari, S., Jamzad, M., Kabiri Fard, H. (2019). Green synthesis of zinc oxide nanoparticles: a comparison. Green Chemistry Letters and Reviews, 12(1), 19-24. https://doi.org/10.1080/17518253.2018.1547925
Gaona, I. M. S., Mendoza, M. C., Vargas, C. A. P. (2023). Structural and Magnetic Properties of Nd3Ba5Cu8O18+ẟ Superconductor. Journal of Low Temperature Physics, 211(3), 156-165. https://doi.org/10.1007/s10909-023-02963-5
Hwa, K. Y., Karuppaiah, P., Gowthaman, N. S. K., Balakumar, V., Shankar, S., Lim, H. N. (2019). Ultrasonic synthesis of CuO nanoflakes: A robust electrochemical scaffold for the sensitive detection of phenolic hazard in water and pharmaceutical samples. Ultrasonics Sonochemistry, 58, 104649. https://doi.org/10.1016/j.ultsonch.2019.104649
Ibrahim, E. H., Kilany, M., Ghramh, H. A., Khan, K. A., ul Islam, S. (2019). Cellular proliferation/cytotoxicity and antimicrobial potentials of green synthesized silver nanoparticles (AgNPs) using Juniperus procera. Saudi Journal of Biological Sciences, 26(7), 1689-1694. https://doi.org/10.1016/j.sjbs.2018.08.014
Ismail, M. I. M. (2020). Green synthesis and characterizations of copper nanoparticles. Materials Chemistry and Physics, 240, 122283. https://doi.org/10.1016/j.matchemphys.2019.122283
Jacob, S. J. P., Prasad, V. L. S., Sivasankar, S., Muralidharan, P. (2017). Biosynthesis of silver nanoparticles using dried fruit extract of Ficus carica - Screening for its anticancer activity and toxicity in animal models. Food and Chemical Toxicology, 109, 951-956. https://doi.org/10.1016/j.fct.2017.03.066
Jadoun, S., Arif, R., Jangid, N. K., Meena, R. K. (2021). Green synthesis of nanoparticles using plant extracts: a review. Environmental Chemistry Letters, 19(1), 355-374. https://doi.org/10.1007/s10311-020-01074-x
Jamzad, M. & Bidkorpeh, M. (2020). Green synthesis of iron oxide nanoparticles by the aqueous extract of Laurus nobilis L. leaves and evaluation of the antimicrobial activity. Journal of Nanostructure in Chemistry, 10. https://doi.org/10.1007/s40097-020-00341-1
Jansanthea, P., Inyai, N., Chomkitichai, W., Ketwaraporn, J., Ubolsook, P., Wansao, C., Wanaek, A., Wannawek, A., Kuimalee, S., Pookmanee, P. (2024). Green synthesis of CuO/Fe2O3/ZnO ternary composite photocatalyst using grape extract for enhanced photodegradation of environmental organic pollutant. Chemosphere, 351, 141212. https://doi.org/10.1016/j.chemosphere.2024.141212
Johurul Islam, M., Khatun, N., Hossen Bhuiyan, R., Sultana, S., Shaikh, M. A. A., Bitu, M. N. A., Chowdhury, F., Islam, S. (2023). Psidium guajava leaf extract mediated green synthesis of silver nanoparticles and its application in antibacterial coatings. RSC Advances, 13(28), 19164-19172. https://doi.org/10.1039/D3RA03381C
Jose, J., Kumar, R., Harilal, S., Mathew, G. E., Parambi, D. G. T., Prabhu, A., Uddin, Md. S., Aleya, L., Kim, H., Mathew, B. (2020). Magnetic nanoparticles for hyperthermia in cancer treatment: an emerging tool. Environmental Science and Pollution Research, 27(16), 19214-19225. https://doi.org/10.1007/s11356-019-07231-2
Kanwal, Z., Raza, M. A., Riaz, S., Manzoor, S., Tayyeb, A., Sajid, I., Naseem, S. (2019). Synthesis and characterization of silver nanoparticle-decorated cobalt nanocomposites (Co@AgNPs) and their density-dependent antibacterial activity. Royal Society Open Science, 6(5), 182135. https://doi.org/10.1098/rsos.182135
Khalil, A. T., Ovais, M., Ullah, I., Ali, M., Shinwari, Z. K., Maaza, M. (2017). Biosynthesis of iron oxide (Fe2O3) nanoparticles via aqueous extracts of Sageretia thea (Osbeck.) and their pharmacognostic properties. Green Chemistry Letters and Reviews, 10(4), 186-201. https://doi.org/10.1080/17518253.2017.1339831
Kooti, M., Saiahi, S., Motamedi, H. (2013). Fabrication of silver-coated cobalt ferrite nanocomposite and the study of its antibacterial activity. Journal of Magnetism and Magnetic Materials, 333, 138-143. https://doi.org/10.1016/j.jmmm.2012.12.038
Kumar, B., Smita, K., Cumbal, L., Debut, A. (2017). Green synthesis of silver nanoparticles using Andean blackberry fruit extract. Saudi Journal of Biological Sciences, 24(1), 45-50. https://doi.org/10.1016/j.sjbs.2015.09.006
Kumar Das, P., Mohanty, C., Krishna Purohit, G., Mishra, S., Palo, S. (2022). Nanoparticle assisted environmental remediation: Applications, toxicological implications and recommendations for a sustainable environment. Environmental Nanotechnology, Monitoring & Management, 18, 100679. https://doi.org/10.1016/j.enmm.2022.100679
Kumar, K. K. P., Dinesh, N. D., Murari, S. K. (2019). Synthesis of CuO and Ag doped CuO nanoparticles from Muntingia calabura leaf extract and evaluation of their antimicrobial potential. International Journal of Nano and Biomaterials, 8(3-4), 228-252. https://doi.org/10.1504/IJNBM.2019.104939
Mahfuzul Hoque, M. D., Bari, M. L., Inatsu, Y., Juneja, V. K., Kawamoto, S. (2007). Antibacterial activity of guava (Psidium guajava L.) and Neem (Azadirachta indica A. Juss.) extracts against foodborne pathogens and spoilage bacteria. Foodborne Pathogens and Disease, 4(4), 481-488. https://doi.org/10.1089/fpd.2007.0040
Manikandan, R. & Anand, V. (2015). A Review on Antioxidant activity of Psidium guajava. Research Journal of Pharmacy and Technology, 8, 339. https://doi.org/10.5958/0974-360X.2015.00056.6
Marslin, G., Siram, K., Maqbool, Q., Selvakesavan, R. K., Kruszka, D., Kachlicki, P., Franklin, G. (2018). Secondary Metabolites in the Green Synthesis of Metallic Nanoparticles. Materials, 11(6), Article 6. https://doi.org/10.3390/ma11060940
Mohamed, H. E. A., Thema, T., Dhlamini, M. S. (2021). Green synthesis of CuO nanoparticles via Hyphaene thebaica extract and their optical properties. Materials Today: Proceedings, 36, 591-594. https://doi.org/10.1016/j.matpr.2020.05.592
Naik, T. S. S. K., Singh, S., Narasimhappa, P., Varshney, R., Singh, J., Khan, N. A., Zahmatkesh, S., Ramamurthy, P. C., Shehata, N., Kiran, G. N., Sunil, K. (2023). Green and sustainable synthesis of CaO nanoparticles: Its solicitation as a sensor material and electrochemical detection of urea. Scientific Reports, 13(1), 19995. https://doi.org/10.1038/s41598-023-46728-2
Narayanan, M., Divya, S., Natarajan, D., Senthil-Nathan, S., Kandasamy, S., Chinnathambi, A., Alahmadi, T. A., Pugazhendhi, A. (2021). Green synthesis of silver nanoparticles from aqueous extract of Ctenolepis garcini L. and assess their possible biological applications. Process Biochemistry, 107, 91-99. https://doi.org/10.1016/j.procbio.2021.05.008
Nguyen, D.-K., Hung, N. Q., Dinh, V.-P. (2023). Antibacterial properties of silver nanoparticles greenly synthesized using guava fruit extract as a reducing agent and stabilizer. Applied Nanoscience, 13(6), 3709-3720. https://doi.org/10.1007/s13204-022-02506-6
Nope, E., Sathicq, G., Martínez, J. J., Gaona, I. M. S., Mendoza, M. C., Vargas, C. A. P., Romanelli, G. P., Luque, R. (2025). Cationic charge influence on the magnetic response of the Fe3O4–[Me2+1−y Me3+y(OH2)]y+(Co32−)y/2·mH2O hydrotalcite system. Nanotechnology Reviews, 14(1). https://doi.org/10.1515/ntrev-2025-0204
Otálora, M. C., Wilches-Torres, A., Gómez-Castaño, J. A. (2022). Spray-Drying Microencapsulation of Pink Guava (Psidium guajava) Carotenoids Using Mucilage from Opuntia ficus-indica Cladodes and Aloe Vera Leaves as Encapsulating Materials. Polymers, 14(2), 310. https://doi.org/10.3390/polym14020310
Otálora, M. C., Wilches-Torres, A., Gómez-Castaño, J. A. (2024). Physicochemical and bioactive characterization of pink guava pulp microcapsules prepared by freeze-drying using coffee mucilage as a wall material. LWT, 207, 116665. https://doi.org/10.1016/j.lwt.2024.116665
Paidari, S. & Ibrahim, S. A. (2021). Potential application of gold nanoparticles in food packaging: a mini review. Gold Bulletin, 54(1), 31-36. https://doi.org/10.1007/s13404-021-00290-9
Pallavolu, M.-R., Banerjee, A.-N., Joo, S.-W. (2023). Battery-Type Behavior of Al-Doped CuO Nanoflakes to Fabricate a High-Performance Hybrid Supercapacitor Device for Superior Energy Storage Applications. Coatings, 13(8), Article 8. https://doi.org/10.3390/coatings13081337
P. N. V. K., Ummey, S., Ruddaraju, L. K., Gadi, S., Cherukuri, C. S., Barla, S., Pammi, S. V. N. (2019). Antibacterial efficacy of green synthesized α-Fe2O3 nanoparticles using Sida cordifolia plant extract. Heliyon, 5(11), e02765. https://doi.org/10.1016/j.heliyon.2019.e02765
Pareek, V., Devineau, S., Sivasankaran, S. K., Bhargava, A., Panwar, J., Srikumar, S., Fanning, S. (2021). Silver Nanoparticles Induce a Triclosan- Like Antibacterial Action Mechanism in Multi-Drug Resistant Klebsiella pneumoniae. Frontiers in Microbiology, 12, 638640. https://doi.org/10.3389/fmicb.2021.638640
Parvathiraja, C. & Shailajha, S. (2021). Bioproduction of CuO and Ag/CuO heterogeneous photocatalysis-photocatalytic dye degradation and biological activities. Applied Nanoscience, 11(4), 1411-1425. https://doi.org/10.1007/s13204-021-01743-5
Parvekar, P., Palaskar, J., Metgud, S., Maria, R., Dutta, S. (2020). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomaterial Investigations in Dentistry, 7(1), 105-109. https://doi.org/10.1080/26415275.2020.1796674
Patil, S. P. & Rane, P. M. (2020). Psidium guajava leaves assisted green synthesis of metallic nanoparticles: a review. Beni-Suef University Journal of Basic and Applied Sciences, 9(1), 60. https://doi.org/10.1186/s43088-020-00088-2
Rajesh Kumar, T. V., Murthy, J. S. R., Narayana Rao, M., Bhargava, Y. (2016). Evaluation of silver nanoparticles synthetic potential of Couroupita guianensis Aubl., flower buds extract and their synergistic antibacterial activity. 3 Biotech, 6(1), 92. https://doi.org/10.1007/s13205-016-0407-9
Ramola, B., Joshi, N. C., Ramola, M., Chhabra, J., Singh, A. (2019). Green Synthesis, Characterisations and Antimicrobial Activities of CaO Nanoparticles. Oriental Journal of Chemistry, 35(3), 1154-1157.
Rashid, S. S., Mustafa, A. H., Ab Rahim, M. H. (2022). Ferromagnetic nanoparticles synthesis and functionalization for laccase enzyme immobilization. Materials Today: Proceedings, 48, 916-919. https://doi.org/10.1016/j.matpr.2021.03.661
Reddy, K. R. (2017). Green synthesis, morphological and optical studies of CuO nanoparticles. Journal of Molecular Structure, 1150, 553-557. https://doi.org/10.1016/j.molstruc.2017.09.005
Rodríguez-Medina, N. N. & Valdés-Infante Herrero, J. (2016). Chapter 13 - Guava (Psidium guajava L.) Cultivars: An Important Source of Nutrients for Human Health. In M. S. J. Simmonds & V. R. Preedy (Eds.), Nutritional Composition of Fruit Cultivars (pp. 287-315). Academic Press. https://doi.org/10.1016/B978-0-12-408117-8.00013-1
Saavedra-Gaona, I. M., Supelano, G. I., Suárez-Vera, S. G., Fonseca, L. C. I., Castañeda-Mendoza, M., Sánchez-Sáenz, C. L., Izquierdo, J. L., Gómez, A., Morán, O., Parra-Vargas, C. A. (2024). Magnetic and electrical behaviour of Yb substitution on Bi1-xYbxFeO3 (0.00 < x < 0.06) ceramic system. Journal of Magnetism and Magnetic Materials, 593, 171827. https://doi.org/10.1016/j.jmmm.2024.171827
Salem, S. S., EL-Belely, E. F., Niedbała, G., Alnoman, M. M., Hassan, S. E.- D., Eid, A. M., Shaheen, T. I., Elkelish, A., Fouda, A. (2020). Bactericidal and In-Vitro Cytotoxic Efficacy of Silver Nanoparticles (Ag-NPs) Fabricated by Endophytic Actinomycetes and Their Use as Coating for the Textile Fabrics. Nanomaterials, 10(10), Article 10. https://doi.org/10.3390/nano10102082
Santhoshkumar, T., Rahuman, A. A., Jayaseelan, C., Rajakumar, G., Marimuthu, S., Kirthi, A. V., Velayutham, K., Thomas, J., Venkatesan, J., Kim, S.-K. (2014). Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pacific Journal of Tropical Medicine, 7(12), 968-976. https://doi.org/10.1016/S1995-7645(14)60171-1
Shahriary, M., Veisi, H., Hekmati, M., Hemmati, S. (2018). In situ green synthesis of Ag nanoparticles on herbal tea extract (Stachys lavandulifolia)-modified magnetic iron oxide nanoparticles as antibacterial agent and their 4-nitrophenol catalytic reduction activity. Materials Science and Engineering: C, 90, 57-66. https://doi.org/10.1016/j.msec.2018.04.044
Sharma, D., Ledwani, L., Mehrotra, T., Kumar, N., Pervaiz, N., Kumar, R. (2020). Biosynthesis of hematite nanoparticles using Rheum emodi and their antimicrobial and anticancerous effects in vitro. Journal of Photochemistry and Photobiology B: Biology, 206, 111841. https://doi.org/10.1016/j.jphotobiol.2020.111841
Sharmila, G., Sakthi Pradeep, R., Sandiya, K., Santhiya, S., Muthukumaran, C., Jeyanthi, J., Manoj Kumar, N., Thirumarimurugan, M. (2018). Biogenic synthesis of CuO nanoparticles using Bauhinia tomentosa leaves extract: Characterization and its antibacterial application. Journal of Molecular Structure, 1165, 288-292. https://doi.org/10.1016/j.molstruc.2018.04.011
Siddiqui, H., Qureshi, M. S., Haque, F. Z. (2016). Valuation of copper oxide (CuO) nanoflakes for its suitability as an absorbing material in solar cells fabrication. Optik, 127(8), 3713-3717. https://doi.org/10.1016/j.ijleo.2015.12.133
Singh, P., Singh, K. R., Verma, R., Prasad, P., Verma, R., Das, S. N., Singh, J., Singh, R. P. (2022). Preparation, antibacterial activity, and electrocatalytic detection of hydrazine based on biogenic CuFeO2/PANI nanocomposites synthesized using Aloe barbadensis Miller. New Journal of Chemistry, 46(18), 8805-8816. https://doi.org/10.1039/D2NJ00913G
Sivaraj, R., Rahman, P. K. S. M., Rajiv, P., Salam, H. A., Venckatesh, R. (2014). Biogenic copper oxide nanoparticles synthesis using Tabernaemontana divaricate leaf extract and its antibacterial activity against urinary tract pathogen. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 133, 178-181. https://doi.org/10.1016/j.saa.2014.05.048
Sougandhi, P. R. & Ramanaiah, S. (2020). Green synthesis and spectral characterization of silver nanoparticles from Psidium guajava leaf extract. Inorganic and Nano-Metal Chemistry, 50(12), 1290-1294. https://www.tandfonline.com/doi/abs/10.1080/24701556.2020.1745839
Tamoradi, T. & Mousavi, S. M. (2020). In situ biogenic synthesis of functionalized magnetic nanoparticles with Ni complex by using a plant extract (Pistachio Leaf) and its catalytic evaluation towards polyhydroquinoline derivatives in green conditions. Polyhedron, 175, 114211. https://doi.org/10.1016/j.poly.2019.114211
Veisi, H., Karmakar, B., Tamoradi, T., Tayebee, R., Sajjadifar, S., Lotfi, S., Maleki, B., Hemmati, S. (2021). Bio-inspired synthesis of palladium nanoparticles fabricated magnetic Fe3O4 nanocomposite over Fritillaria imperialis flower extract as an efficient recyclable catalyst for the reduction of nitroarenes. Scientific Reports, 11(1), Article 1. https://doi.org/10.1038/s41598-021-83854-1
Yalcin, A. O., de Nijs, B., Fan, Z., Tichelaar, F. D., Vanmaekelbergh, D., van Blaaderen, A., Vlugt, T. J. H., van Huis, M. A., Zandbergen, H. W. (2014). Core-shell reconfiguration through thermal annealing in Fe(x)O/CoFe2O4 ordered 2D nanocrystal arrays. Nanotechnology, 25(5), 055601. https://doi.org/10.1088/0957-4484/25/5/055601
Yang, Y., Aqeel Ashraf, M., Fakhri, A., Kumar Gupta, V., Zhang, D. (2021). Facile synthesis of gold-silver/copper sulfide nanoparticles for the selective/sensitive detection of chromium, photochemical and bactericidal application. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 249, 119324. https://doi.org/10.1016/j.saa.2020.119324
Yoonus, J., Resmi, R., Beena, B. (2021). Evaluation of antibacterial and anticancer activity of green synthesized iron oxide (α-Fe2O3) nanoparticles. Materials Today: Proceedings, 46, 2969-2974. https://doi.org/10.1016/j.matpr.2020.12.426
Zahn, D., Landers, J., Buchwald, J., Diegel, M., Salamon, S., Müller, R., Köhler, M., Ecke, G., Wende, H., Dutz, S. (2022). Ferrimagnetic Large Single Domain Iron Oxide Nanoparticles for Hyperthermia Applications. Nanomaterials, 12(3), Article 3. https://doi.org/10.3390/nano12030343

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2025 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales

