Resumen
En este estudio se analiza la evolución morfodinámica del delta del río Sinú, también conocido como delta de Tinajones, en una escala temporal estacional e interanual durante el periodo de 1984 a 2021. Se calcularon los flujos mensuales de sedimentos transportados por el oleaje, la marea y el río y se evaluó la dominancia relativa de estos forzadores en la morfodinámica del sistema. Estos análisis se complementaron con una caracterización morfométrica basada en imágenes satelitales. El delta de Tinajones se clasificó como un sistema de dominancia mixta, donde la influencia del oleaje y la descarga del río se alternan estacionalmente debido a la dinámica de la zona de convergencia intertropical. Durante la época seca (diciembre-abril) el delta es dominado por el oleaje debido a la intensificación de los vientos alisios. En contraste, durante la época transicional y húmeda (mayojulio y agosto-noviembre), el delta es dominado por el río debido a las mayores precipitaciones y el incremento del caudal fluvial. Se evidenció una tendencia significativa de disminución del caudal sólido del río, que ha resultado en un incremento de la influencia del oleaje en el sistema. Este cambio se evidenció también en los análisis de evolución morfométrica, los cuales muestran un predominio reciente de la erosión en la zona central del delta, acompañado de acreción en los sectores laterales y formación de espigas, geoformas características de ambientes dominados por el oleaje. Resaltamos la importancia de analizar los deltas como sistemas en equilibrio dinámico con variabilidad y tendencias en sus forzadores dominantes, en lugar de considerarlos sistemas estacionarios en el mediano y largo plazo.
Referencias
Andrade, C.A. & E.D. Barton. (2000). Eddy development and motion in the Caribbean Sea. Journal of Geophysical Research. 105, 26191-26201.
Ashton, A. D. & Giosan, L. (2011). Wave-angle control of delta evolution. Geophysical Research Letters. 38, L13405. https://doi.org/10.1029/2011Gik L047630
Boak, E. & Turner, I. (2005). Shoreline definition and detection: a review. Journal of Coastal Research. 21(4), 688-703.
Cai, H., Yang, H., Liu, J., Niu, L., Ren, L., Liu, F., Ou, S., Yang, Q. (2019). Quantifying the impacts of human interventions on relative mean sea level change in the Pearl River Delta, China. Ocean Coastal Management, 173, 52-64. https://doi.org/10.1016/j.ocecoaman.2019.02.007
Coastal Engineering Research Center-CERC. (1984). Shore Protection Manual, vols. I and II. Coastal Engineering Research Center, USACE.
Coleman, J.M. (1981). Deltas: Processes of Deposition and Models for Exploration, second ed. Burgess Publishing Company.
Coy, M. (2020). Metodología para la estimación de impactos hidráulicos y geomorfológicos por ascenso del nivel del mar en cuencas con llanuras costeras: caso de aplicación cuenca del río Sinú. Repositorio Universidad Nacional. 129.
Chuvieco, E. (2000). Fundamentos de Teledetección Espacial. Rialp.
Clark, J.R. (1996). Coastal Zone Management Handbook. CRC Press/Lewis Publishers.
Crowell, M., Letherman, S.P., Buckley, M.K. (1991). Historical shoreline change: error analysis and mapping accuracy. Journal of Coastal Research, 7(3), 839-852.
Dimar-CIOH (2013). Atlas Geomorfológico del Litoral Caribe Colombiano. Dirección General Marítima-Centro de Investigaciones Oceanográficas e Hidrográficas del Caribe, Dimar, Serie Publicaciones Especiales CIOH.
Duong, N. T., Tran, K. Q., Luu, L. X., Tran, L. H. (2023). Prediction of breaking wave height by using artificial neural network-based approach. Ocean Modelling, 182, 102177. https://doi.org/10.1016/J.OCEMOD.2023.102177
Filip, F. & Giosan, L. (2014). Evolution of Chilia lobes of the Danube delta: Reorganization of deltaic processes under cultural pressures. Anthropocene, 5, 65-70. https://doi.org/10.1016/j.ancene.2014.07.003
Galloway, W. E. (1975). Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems. Houston Geological Society.
García, N. & Mechoso, C. (2005). Variability in the discharge of South American rivers and in climate, Hydrological Sciences Journal, 50, 459-478. https://doi.org/10.1623/hysj.50.3.459.65030
Gao, W., Nienhuis, J., Nardin, W., Wang, Z. B., Shao, D., Sun, T., Cui, B. (2020). Wave controls on deltaic shoreline‐channel morphodynamics: Insights from a coupled model. Water Resources Research, 56, e2020WR027298.
Giosan, L., Donnelly, J.P., Vespremeanu, E.I., Buonaiuto, E.S. (2005). River delta morphodynamics: examples from the Danube delta. In: Giosan, L., Bhattacharya, J.P. (Eds.), River Deltas-Concepts, Models and Examples, vol. 83. SEPM (Society for Sedimentary Geology) Special Publication.
Jarriel, T., Swartz, J., Passalacqua, P. (2021). Global rates and patterns of channel migration in river deltas. Proceedings of the National Academy of Sciences of United States of America, 118(46), e2103178118. https://doi.org/10.1073/pnas.2103178118
Kendall, M. (1975). Rank Correlation Methods. Griffin.
Larson, M., Kraus, N.C. (1989). SBEACH: Report 1-Empirical Foundation and Model Development-Partial. Technical Report CERC-89-9. Waterways Experiment Station, US Army Corps of Engineers.
Mann, H. (1945). Nonparametric tests against trend. Econometrica, 13, 245-259.
Milliman, J. D., Farnsworth, K., Jones, P., Xu, K., Smith, L. C. (2008). Climatic and anthropogenic factors affecting river discharge to the global ocean, 1951-2000. Global Planet Change, 62, 187-194. https://doi.org/10.1016/j.gloplacha.2008.03.001
Mil-Homens, J., Ranasinghe, R., van Thiel de Vries, J. S. M., Stive, M. J. F. (2013). Reevaluation and improvement of three commonly used bulk longshore sediment transport formulas. Coastal Engineering, 75(1), 29-39.
Moore, L. (2000). Shoreline mapping techniques. Journal of Coastal Research, 16(1), 111-124.
(Continuará en la siguiente respuesta)
Morton, R. A., Miller, T. L., Moore, L. J. (2004). National assessment of shoreline change: Part 1: Historical shoreline changes and associated coastal land loss along the U.S. Gulf of Mexico. U.S. Geological Survey Open-file Report, 2004-1043.
Nienhuis, J. H., Ashton, A. D., Edmonds, D. A. (2016). What makes a delta wave-dominated? Geology, 44(6), 511-514. https://doi.org/10.1130/G37718.1
Nienhuis, J. H., van de Lageweg, W. I., Edmonds, D. A. (2018). A coupled wave-hydrodynamic model of river delta morphodynamics. Computers & Geosciences, 119, 47-61. https://doi.org/10.1016/j.cageo.2018.06.009
Ranasinghe, R., Stive, M. J. F., Cowell, P. J. (1999). A morphological behavior-oriented model for coasts and estuaries. Coastal Engineering, 36(3), 277-300.
Restrepo, J. D. & López, S. A. (2008). Morphodynamics of the Pacific and Caribbean deltas of Colombia, South America. Journal of South American Earth Sciences, 25, 1-21. https://doi.org/10.1016/j.jsames.2007.09.002
Richards, T. M., Nienhuis, J. H., Anderson, R. S., Perron, J. T. (2017). Crossing the cusp: How channelization stabilizes deltas by inducing cohesive sediment deposition. Journal of Geophysical Research: Earth Surface, 122, 1235-1256.
Schumm, S. A. (1977). The Fluvial System. John Wiley & Sons.
Suter, J. R. (1994). Deltaic coasts. In R. W. Ginsberg (Ed.), Global Coastal and Marine Systems. Springer.
Van Rijn, L. C. (2002). Principles of Sediment Transport in Rivers, Estuaries, and Coastal Seas. Aqua Publications.
Wright, L. D. & Coleman, J. M. (1973). Variations in morphology of major river deltas as functions of ocean wave and river discharge regimes. American Association of Petroleum Geologists Bulletin, 57(2), 370-398.
Xu, K., Milliman, J. D., Yang, Z., Wang, H. (2006). Yangtze sediment decline partly from Three Gorges Dam. EOS Transactions American Geophysical Union, 87(19), 185-190.
Yin, D., Edmonds, D. A., Li, H., Ma, Y. (2019). A framework for investigating delta morphodynamic evolution under anthropogenic impacts: The Mekong Delta. Earth Surface Processes and Landforms, 44(15), 3007-3021.
Zhang, W., Cai, F., Zhu, Y., Qi, H., Xu, Q., Zeng, Z. (2015). Variation in sediment fluxes in the Yangtze River Estuary under intensive human activities since the 1950s. Hydrology Research, 46(6), 965-979.

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2025 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales