Resumen
En el contexto del análisis de Clifford surgen las funciones inframonogénicas como las soluciones de una versión no conmutativa de la ecuación de Laplace. La aplicabilidad de estas funciones en la búsqueda de nuevas representaciones para las soluciones de la ecuación de equilibrio en Elasticidad Lineal ha sido objeto de estudio por varios investigadores. Este trabajo se centra en descomposiciones aditivas para los desplazamientos del sistema de Lamé-Navier mediante funciones inframonogénicas.
Referencias
Álvarez, L. M., García, A. M., Alejandre, M. Á., Blaya, R. A. (2023) Two Spheres Uniquely Determine Infrabimonogenic Functions. Mediterranean Journal of Mathematics, 20(318), 1-18
Barber, J., Klarbring, A. (2003) Solid mechanics and its applications. Springer, Berlin
Blaya, R. A., Reyes, J. B., Guzmán, A., Kähler, U. (2016) On the Π-operator in Clifford Analysis. Journal of Mathematical Analysis and Applications, 434, 1138-1159
Blaya, R. A., Reyes, J. B., Guzmán, A., Kähler, U. (2017) On the ϕ-Hiperderivative of the ψ-Cauchy-Type Integral in Clifford Analysis. Computational Methods and Function Theory, 17, 101-119
Bock, S., Gürlebeck, K., Legatiuk, D., Nguyen, H. M. (2015) ψ-Hyperholomorphic functions and a Kolosov-Muskhelishvili formula. Mathematical Methods in the Applied Sciences, 38, 5114-5123
Brackx, F., Delanghe, R., Sommen, F. (1982) Clifford analysis. Pitman (Advanced Publishing Program), Boston, MA, Wiley
Delanghe, R. (1970) On regular-analytic functions with values in a Clifford algebra. Mathematische Annalen, 185, 91-111
Delanghe, R. (2001) Clifford Analysis: History and Perspective. Computational Methods and Function Theory, 1(1), 107-153
Delanghe, R., Reyes, J. B. (2003) An invitation to Clifford Analysis. Ciencias Matemáticas, 21(2), 109-137
Delanghe, R., Sommen, F., Souček, V. (1992) Clifford algebra and spinor-valued functions. A function theory for the Dirac operator (Vol. 53). Nature Publishing Group
Dinh, D. C. (2014) On structure of inframonogenic functions. Advances in Applied Clifford Algebras, 31, 1-12
Fung, Y. C. (1965) Foundations of Solid Mechanics. Prentice-Hall, Englewood Cliffs
García, A. M., García, T. M., Blaya, R. A., Reyes, J. B. (2017) A Cauchy integral formula for inframonogenic functions in Clifford analysis. Advances in Applied Clifford Algebras, 27, 1147-1159
García, A. M., García, T. M., Blaya, R. A., Reyes, J. B. (2018) Inframonogenic functions and their applications in three dimensional elasticity theory. Mathematical Methods in the Applied Sciences, 41, 3622-3631
García, A. M., García, T. M., Blaya, R. A., Reyes, J. B. (2020) Decomposition of inframonogenic functions with applications in elasticity theory. Mathematical Methods in the Applied Sciences, 43, 1915-1924
García, A. M., Santiesteban, D. A., Blaya, R. A. (2023) On the Dirichlet problem for second order elliptic systems in the ball. Journal of Differential Equations, 364, 498-520
Grigoriev, Y. (2016) Regular quaternionic functions and their applications in three-dimensional elasticity. XXIV ICTAM Regular Quaternionic, 1, 21-26
Gürlebeck, K., Habetha, K., Sprössig, W. (2008) Holomorphic Functions in the Plane and n-Dimensional Space. Birkhäuser Verlag, Basel
Gürlebeck, K., Nguyen, H. M. (2014) On ψ-hyperholomorphic Functions and a Decomposition of Harmonics. Hypercomplex Analysis: New Perspectives and Applications. Trends in Mathematics, 181-189
Krausshar, R., Malonek, H. (2001) A characterization of conformal mappings in IR4 by a formal differentiability condition. Bulletin de la Société Royale des Sciences de Liège, 70(1), 35-49
Lámé, G. (1837) Mémoire sur les surfaces isothermes dans les corps solides homogènes en équilibre de température. Journal de Mathématiques Pures et Appliquées, 2, 147-188
Lávicka, R. (2011) The Fischer decomposition for the H-action and its applications. Hypercomplex analysis and applications trends in mathematics. Edited by Sabadini and F. Sommen, 1
Malonek, H., Peña-Peña, D., Sommen, F. (2010) Fischer decomposition by inframonogenic functions. CUBO A Mathematical Journal, 12, 189-197
Malonek, H., Peña-Peña, D., Sommen, F. (2011) A Cauchy-Kowalevski Theorem for Inframonogenic Functions. Math. J. Okayama Univ., 53, 167-172
Malvern, L. (1969) Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, Upper Saddle River, NJ
Marsden, J., Hughes, T. (1983) Mathematical foundations of elasticity. Dover Publications
Muskhelishvili, N. (1953) Some basic problems of the mathematical theory of elasticity (Vol. 15). Noordhoff Groningen, Springer
Nguyen, H. M. (2015) ψ-Hyperholomorphic Function Theory in R3: Geometric Mapping Properties and Applications [Tesis doctoral, Fakultät Bauingenieurwesen der Bauhaus-Universität]
Nôno, K. (1986) On the quaternion linearization of Laplacian ∆. Bulletin of Fukuoka University of Education. Part III. Mathematics, Natural Sciences and Technology, 35, 5-10
Nôno, K., Inenaga, Y. (1987) On the Clifford linearization of Laplacian. Journal of the Indian Institute of Science, 67(5-6), 203-208
Patrault, D. W., Bock, S., Gürlebeck, K. (2014) Three-dimensional elasticity based on quaternionvalued potentials. International Journal of Solids and Structures, 51, 3422-3430
Peña, C. Á., Morais, J., Porter, R. M. (2023) Reduced-quaternion inframonogenic functions on the ball. Mathematical Methods in the Applied Sciences, 46(18), 18935-18951
Reséndis, F., Shapiro, M. (2002) Recent advances in hypercomplex analysis. Carta Informativa, Sociedad Matemática Mexicana, Marzo, 11-14
Reyes, J. B., Schepper, H. D., Adán, A. G., Sommen, F. (2016) Higher order Borel-Pompeiu representations in Clifford analysis. Mathematical Methods in the Applied Sciences, 39, 4787-4796
Ricardo, J. L. S., Blaya, R. A., Reyes, J. B., Ortiz, J. S. (2022) On a Riemann–Hilbert boundary value problem for (ϕ,ψ)-harmonic functions in Rm. Georgian Mathematical Journal, 29, 445-454
Russell, M., Brown, I. (2009) The mixed problem for the Lamé system in a class of Lipschitz domains. Journal of Differential Equations, 246, 2577-2589
Ryan, J. (2000) Basic Clifford analysis. Cubo Matemática Educacional, 2, 226-256
Ryan, J. (2004) Introductory Clifford Analysis. En Ablamowicz, R. y Sobczyk, G. (Eds.) Lectures on Clifford (geometric) algebras and applications. Birkhäuser, Boston, MA
Sadd, M. (2005) Elasticity: Theory, Applications and Numerics. Elsevier, Oxford
Santiesteban, D. A. (2024) ∂-problem for a second order elliptic system in Clifford analysis. Mathematical Methods in the Applied Sciences, 47, 9718-9728
Santiesteban, D. A., Blaya, R. A. (2022) Isomorphisms of partial differential equations in Clifford analysis. Advances in Applied Clifford Algebras, 32(10), 1-18
Santiesteban, D. A., Blaya, R. A., Alejandre, M. Á. (2022a) On (φ,ψ)-inframonogenic functions in Clifford analysis. Bulletin of the Brazilian Mathematical Society, New Series, 53, 605-621
Santiesteban, D. A., Blaya, R. A., Alejandre, M. Á. (2022b) On a generalized Lamé-Navier system in R3. Mathematica Slovaca, 72(6), 1527-1540
Santiesteban, D. A., Blaya, R. A., Alejandre, M. Á. (2023) Buscando estructuras en las soluciones de un sistema generalizado de Lamé-Navier. Publicaciones e Investigación, 17(1), 1-9
Santiesteban, D. A., Blaya, R. A., Pérez, Y. P., Almira, J. S. (2024) Fractional Fischer decompositions by inframonogenic functions. Journal of Mathematical Analysis and Applications, 539, 128468
Santiesteban, D. A., Blaya, R. A., Reyes, J. B. (2023) Boundary value problems for a second-order elliptic partial differential equation system in Euclidean space. Mathematical Methods in the Applied Sciences, 46, 15784-15798
Santiesteban, D. A., Pérez, Y. P., Blaya, R. A. (2022) Generalizations of harmonic functions in Rm. Analysis and Mathematical Physics, 12(10), 1-12
Shapiro, M. V., Vasilevski, N. (1995) Quaternionic ψ-hyperholomorphic functions, singular integral operators and boundary value problems. I. ψ-hyperholomorphic function theory. Complex Variables, 27, 17-46
Shapiro, M. (1997) On the conjugate harmonic functions of M. Riesz-E. Stein-G. Weiss. En Dimiev, S. et al. (Eds.), Topics in Complex Analysis, Differential Geometry and Mathematical Physics. Third International Workshop on Complex Structures and Vector Fields, St. Konstantin, Bulgaria, Agosto, 23-29
Sommen, F., Sprössig, W. (2002) Introduction to Clifford analysis. Mathematical Methods in the Applied Sciences, 25(6), 1337-1342
Valencia, D. G., Blaya, R. A., Alejandre, M. Á. (2021) On the Plane Lamé-Navier System in Fractal Domains. Complex Analysis and Operator Theory, 15, 1-15
Valencia, D. G., Blaya, R. A., Alejandre, M. Á., Pérez, Y. P. (2023) On the Riemann problem in fractal elastic media. Analysis and Mathematical Physics, 13(1), 1-15
Wang, L., Jia, S., Luo, L., Qiu, F. (2022) Plemelj formula of inframonogenic functions and their boundary value problems. Complex Variables and Elliptic Equations, 68(7), 1158-1181

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2024 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales