Resumen
Los herbicidas utilizados en las prácticas agrícolas constituyen un grupo de sustancias de especial interés en la evaluación de la fitotoxicidad de grupos de algas por la similitud de sus mecanismos de acción en plantas superiores, que son los organismos blanco de estas sustancias químicas, y son componente fundamental en la evaluación del riesgo ecológico. El objetivo de nuestro trabajo fue evaluar los cambios en el crecimiento, la sensibilidad y la demografía de Scenedesmus quadricauda luego de su exposición crónica a concentraciones subletales del herbicida paraquat. Para ello se incubaron poblaciones de algas en diferentes concentraciones subletales de paraquat durante cuatro meses. Se encontraron cambios en la sensibilidad al herbicida, según lo demostró el aumento de los índices de toxicidad en correspondencia con las concentraciones más altas antes de la exposición. Los experimentos con varias poblaciones antes de pre exposición y en ausencia del herbicida permitieron observar modificaciones en los modelos de crecimiento logístico que apuntan al carácter permanente de los cambios observados. Se discuten las implicaciones ambientales de este fenómeno de adaptación de las comunidades fitoplanctónicas de agua dulce en relación con el impacto del uso de herbicidas en las prácticas agrícolas.
Referencias
Bai, F., Jia Y., Yang, C., Li, T., Wu, Z., Liu, J., Song, L. (2019). Multiple physiological response analyses aid the understanding of sensitivity variation between Microcystis aeruginosa and Chlorella sp. under paraquat exposures. Environmental Sciences Europe, 31, 83. https://doi.org/10.1186/s12302-019-0255-4
Bai, F., Jia, Y., Li, J., Wu, Z., Li, L., Song, L. (2023). Paraquat induces different programmed cell death patterns in Microcystis aeruginosa and Chlorella luteoviridis, Ecotoxicology and Environmental Safety, 249, 114429. https://doi.org/10.1016/j.ecoenv.2022.114429
Belfiore, N.M. & Anderson, S. L. (2001). Effects of contaminants on genetic patterns in aquatic organisms: a review. Mutation Research/Reviews in Mutation Research, 489 (2-3), 97-122. https://doi.org/10.1016/S1383-5742(01)00065-5
Blaise, C. & Férard, J. (2005). Small-scale freshwater toxicity investigations. Volume 1: Toxicity test methods. Springer. https://doi.org/10.1007/1-4020-3120-3
Borowitzka, M. A. (2018). The ‘stress’ concept in microalgal biology—homeostasis, acclimation and adaptation. Journal of Apply Phycology, 30, 2815-2825. https://doi.org/10.1007/s10811018-1399-0
Brunharo, C.A. & Hanson, B.D. (2017). Vacuolar sequestration of Paraquat is involved in the resistance mechanism in Lolium perenne L. spp. multiflorum. Frontiers in plant science, 8, 290157. https://doi.org/10.3389/fpls.2017.01485
Cámara de Sanidad Agropecuaria y Fertilizantes (CASAFE). (2024). Uso responsable de fitosanitarios: lectura de etiqueta. https://www.casafe.org/pdf/emerg.pdf
Chen, J., Su, Y., Lin, F., Iqbal, M., Mehmood, K., Zhang, H., Shi, D. (2021). Effect of paraquat on cytotoxicity involved in oxidative stress and inflammatory reaction: A review of mechanisms and ecological implications. Ecotoxicology and Environmental Safety, 224,112711. https://doi.org/10.1016/j.ecoenv.2021.112711
De Noyelles, F., Kettle, W.D., Sinn, D.E. (1982). The responses of plankton communities in experimental ponds to atrazine, the most heavily used pesticide in the United States. Ecology. 63, 1285-1293. https://doi.org/10.2307/1938856
Fuerst, E.P., Nakatani, H.Y., Dodge, A.D., Penner, D., Arntzen, C.J. (1985). Paraquat resistance in Conyza. Plant Physiology, 77, 984-989
Fugère, V., Hébert, M. P., da Costa, N. B., Xu, C.C.Y., Barret Rowan D. H., Beisner, B. E., Bell, G., Fussmann, G. F., Shapiro, B. J., Yargeau, V., Gonzalez, A. (2020). Community rescue in experimental phytoplankton communities facing severe herbicide pollution. Nature Ecology & Evolution, 4(4), 578-588. https://doi.org/10.1038/s41559-020-1134-5
Funke, T., Han, H., Healy-Fried, M.L., Fischer, M., Schönbrunn, E. (2006). Molecular basis for the herbicide resistance of Roundup Ready crops. Proceedings of the National Academy of Sciences (PNAS), 103 (35), 13010-13015. www.pnas.org_cgi_doi_10.1073_ pnas.0603638103
Gravina, F., Dobrzanski, T., Olchanheski, L. R., Galvão, C. W., Reche, P. M., Pileggi, S. A., Azevedo, R. A., Sadowsky, M. J., Pileggi, M. (2017). Metabolic Interference of sod gene mutations on catalase activity in Escherichia coli exposed to Gramoxone® (paraquat) herbicide. Ecotoxicology and Environmental Safety, 139, 89-96. https://doi.org/10.1016/j.ecoenv.2017.01.027
Hawkes, T. R. (2014). Mechanisms of resistance to paraquat in plants. Pesticide Management Science, 70 (9), 1316-1323. https://doi.org/10.1002/ps.3699
Huang, Y., Zhan, H., Bhatt, P. Chen, S. (2019). Paraquat degradation from contaminated environments: Current Achievements and Perspectives. Frontiers in Microbiology, 10, 1754. https://doi.org/10.3389/fmicb.2019.01754
Jamers, A. N. / De Coen, W. (2010). Effect assessment of the herbicide paraquat on a green alga using differential gene expression and biochemical biomarkers. Environmental Toxicology and Chemistry: An International Journal, 29 (4), 893-901.
Jansen, M.A.K., ShaaltieL, Y., Kazzes, D., Canaani, O., Malkin, S., Gressel. (1989). Increased Conyza bonariensis measured by photoacoustic spectroscopy and 14CO2 fixation. Plant Physiology, 91, 1174-1178.
Jindakaraked, M., Khan, E., Kajitvichyanukul, P. (2023). Biodegradation Capabilities of Paraquat-Degrading Bacteria Immobilized on Nanoceramics. Toxics, 11, 638. https://doi.org/10.3390/toxics11070638
Kao, S.M. & Hassan, M. (1985). Biochemical characterization of a Paraquat-tolerant mutant of Escherichia coli. Journal of Biolological Chemistry, 260 (19),10478-10481.
Kosinski, R. & Merkle, M.G. (1984). The effect of four terrestrial herbicides on the productivity of artificial stream algal communities. Jornal of Environmental Quality, 13 (1), 75-82.
Kronholm, I., Bassett, A., Baulcombe, D., Collins, S. (2017). Epigenetic and Genetic Contributions to Adaptation in Chlamydomonas. Molecular Biology and Evolution, 34(9), 2285-2306. https://doi.org/10.1093/molbev/msx166
Machado, M. D. & Soares, E. V. (2021). Exposure of the alga Pseudokirchneriella subcapitata to environmentally relevant concentrations of the herbicide metolachlor: Impact on the redox homeostasis. Ecotoxicology and Environmental Safety, 207, 111264. https://doi.org/10.1016/j.ecoenv.2020.111264
Machigov, E.A., Igonina, E.V., Sviridova, D.A. (2022). The genotoxic effect of the Paraquat radiomimetic on Escherichia coli bacteria. Biological Bulletin Russian Academy of Sciences, 49, 2486-2494. https://doi.org/10.1134/S106235902212010X Margalef, R. (1983). Limnología. Omega.
Melero-Jiménez, I.J., Bañares-España, E., Reul, A., Flores-Moya, A., García-Sánchez, M. J. (2021). Detection of the maximum resistance to the herbicides diuron and glyphosate, and evaluation of its phenotypic cost, in freshwater phytoplankton. Aquatic Toxicology, 240, 105973. https://doi.org/10.1016/j.aquatox.2021.105973
Miller, O.K., Hughes, K.W. (1980). Selection of Paraquat-resistant variants of tobacco from cell cultures. In vitro, 16 (2), 1085-1091.
Moreland, D.E. (1980). Mechanisms of action of herbicides. Annual Review of Plant Physiology, 31, 597-638.
Nazish, T., Huang, Y.J., Zhang, J., Jing, J., Jin-Qiu, X., Alfatih, A., Chao, L., Xiao-Teng, C., Jing, X., Ping, X., Cheng-Bin, X. (2022). Understanding paraquat resistance mechanisms in Arabidopsis thaliana to facilitate the development of paraquat-resistant crops. Plant Communications, 3 (3). https://doi.org/10.1016/j.xplc.2022.100321
Peterson, H.G., C. Boutin, P.A. Martin, K.E. Freemark, N.J. Ruecker., Moody, M.J. (1994). Aquatic phyto-toxicity of 23 pesticides applied at expected environmental concentration. Aquatic Toxicology, 28, 275-292. https://doi.org/10.1016/0166-445X(94)90038-8
Polazzo, F., Oliveira dos Anjos, T. B., Arenas-Sánchez, A., Romo, S., Vighi, M., Rico, A. (2022). Effect of multiple agricultural stressors on freshwater ecosystems: The role of community structure, trophic status, and biodiversity-functioning relationships on ecosystem responses. Science of The Total Environment, 807 (3), 151052. https://doi.org/10.1016/j.scitotenv.2021.151052
Prado, R., García, R., Rioboo, C., Herrero, C., Abalde, J., Cid, A. (2009). Comparison of the sensitivity of different toxicity test endpoints in a microalga exposed to the herbicide paraquat. Environment International, 35 (2), 240-247. https://doi.org/10.1016/j.envint.2008.06.012
Reynolds, C.S. (2006). The Ecology of Freshwater Phytoplankton. Cambridge University Press.
Rychel, K., Tan, J., Patel, A., Lamoureux, C., Hefner, Y., Szubin, R., Johnsen, J., Mohamed, E.T.T., Phaneuf, P. V., Anand, A., Olson, C. A., Park, J. H., Sastry, A. V., Yang, L., Feist, A. M., Palsson, B. O. (2023). Laboratory evolution, transcriptomics, and modeling reveal mechanisms of paraquat tolerance. Cell Reports, 42 (9), 113105.https://doi.org/10.1016/j.celrep.2023.113105
Sáenz, M.E., Alberdi, J.L., Di Marzio, W.D., Accorinti, J., Tortorelli, M.C. (1997a). Paraquat Toxicity to different Green Algae. Bulletin of Environmental Contamination and Toxicology, 58 (6), 922-928. https://doi.org/10.1007/s001289900422
Sáenz, M.E., Di Marzio, W.D., Alberdi, J.L., Accorinti, J., Tortorelli, M.C. (1997b). Effects of technical grade and a commercial formulation of Glyphosate on algal population growth. Bulletin of Environmental Contamination and Toxicology, 59 (4), 638-644. https://doi.org/10.1007/s001289900527
Sáenz, M.E. & Di Marzio, WD. (2009). Ecotoxicidad del herbicida glifosato sobre cuatro algas dulceacuícolas. Limnética, 28 (1), 1-10. https://doi.org/10.23818/limn.28.11
Sáenz, M.E., Di Marzio, W.D., Alberdi, J.L. (2012). Toxicity assessment of Cyfluthrin commercial formulation on growth, photosynthesis and catalase activity of green algae. Pesticide Biochemistry and Physiology, 104, 50-57. https://doi.org/10.1016/j.pestbp.2012.07.001
Sparks, T. (2000). Statistics in ecotoxicology. Wiley.
Sprague, J.B. (1990). Aquatic Toxicology. In: C. B. Schreck and P. B. Moyle (eds.) Methods for fish biology. (p. 491-527). American Fisheries Society.
Tanaka, Y., Chisaka, H., Saka, H. (1986). Movement of Paraquat in resistant and susceptible biotypes of Erigeron philadelphicus and E. canadensis. Physiologia Plantarum, 66, 605-608.
U.S. Environmental Protection Agency (US EPA). (2002). Selenatrum capricornutum growth test. In: Short-term methods for estimating the chronic toxicity of effluents and receiving water to freshwater organisms. EPA-821-R-02- 013. U.S. Environmental Monitoring and Support Laboratory Office of Research and Development.
Valentine, K.P. & Bingham, S.W. (1976). Influence of algae on amitrole and triazine residues in water. Canadian Journal of Botany, 54, 2100-2107.
Vogwill, T., M., Lagator, Colegrave, N., Neve, P. (2012). The experimental evolution of herbicide resistance in Chlamydomonas reinhardtii results in a positive correlation between fitness in the presence and absence of herbicides. Journal of Evolutionary Biology, 25 (10), 1955-1964. https://doi.org/10.1111/j.1420-9101.2012.02558.x
West, Inc. & D. D, Gulley. (1996). TOXSTAT® V 3.5. Western Ecosystems Technology Inc.
Wetzel, R.G. (2001). Limnology: Lake and River Ecosystems. Academic Press.
Wong, P.K. (2000). Effects of 2,4-D, glyphosate and paraquat on growth, photosynthesis and chlorophyll-a synthesis of Scenedesmus quadricauda Berb 614 Aug 2000. Chemosphere, 41(1-2), 177-82. https://doi.org/10.1016/S0045-6535(99)00408-7
World Health Organization (WHO). (1984). International Program on Chemical Safety. Environmental Health Criteria N° 39: Paraquat and Diquat, World Health Organization.
Zar, J.H. (2010). Biostatistical analysis. Pearson.

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2024 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales