ANÁLISIS DE SERIES TEMPORALES NO LINEALES DEL EEG DURANTE EL SUEÑO
PDF (English)

Cómo citar

Campos, D. H. (2024). ANÁLISIS DE SERIES TEMPORALES NO LINEALES DEL EEG DURANTE EL SUEÑO. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 20(78), 491–501. https://doi.org/10.18257/raccefyn.20(78).1996.3044

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

Se calculan la dimensión fractal y el máximo exponente de Lyapunov para el electroencefalograma (EEG) humano durante el sueño. Para este propósito se supone que el EEG es generado por un sistema dinámico determinista no lineal. Se encuentran pequeñas diferencias entre algunas etapas de sueño. El método usado se describe detalladamente e incluye cómo encontrar el espectro de exponentes de Lyapunov, la entropía de Kolmogorov-Sinai y la dimensión de Lyapunov. También se discuten resultados que contradicen el origen exclusivamente determinístico no lineal que algunos autores le atribuyen al EEG.

https://doi.org/10.18257/raccefyn.20(78).1996.3044

Palabras clave

EEG | dimensión | exponentes de Lyapunov | istemas dinámicos deterministas no lineales | caos | series de tiempo | sueño
PDF (English)

Citas

Abarbanel, H.D., R. Brown, J.J. Sidorowich, & L.S. Tsimring. 1993. The analysis of observed chaotic data in physical systems. Reviews of Modern Physics 65(4): 1331-1392.

Albano, A.M. & P.E. Rapp. 1992. On the reliability of dynamical measures of EEG signals in Jansen B.H. & M.E. Brandt (ed.) Second annual conference on nonlinear dynamical analysis of the EEG. World Scientific Publishing. Houston. 117-139.

Babloyantz, A. & A. Destexhe. 1986. Low-dimensional chaos in an instance of epilepsy. Proc. Natl. Acad. Sci. USA 83: 3513-3517.

Binder, P.-M. & D.H. Campos. 1996. Direct calculation of invariant measures for chaotic maps. Physical Review E 53(5): R4259-4262.

Broughton, R.J. 1993. Polysomnography: principles and applications in sleep and arousal disorders in Niedermeyer E. & F.L.d. Silva (ed.) Electroencephalography: basic principles, clinical applications, and related fields. Williams and Wilkins. Baltimore. 765-802.

Casdagli, M., S. Eubank, J.D. Farmer, & J. Gibson. 1991. A theory of state space reconstruction in the presence of noise in Atmanspacher H. & H. Scheingraber (ed.) Information dynamics. Plenum Press, New York.

Chhabra, A. & R.V. Jensen, 1989. Direct determination of the a) singularity spectrum. Physical Review Letters 62(12): 1327-1330.

Doyon, B. 1992. On the existence and the role of chaotic processes in the nervous system. Acta Biotheoretica 40: 113-119.

Eckmann, J.P., S.O. Kamphorst, D. Ruelle, & S. Ciliberto. 1986. Liapunov exponents from a time series. Physical Review A 34(6): 4971-4979.

Eckmann, J.P. & D. Ruelle. 1992. Fundamental limita- tions for estimating dimensions and Lyapunov ex- ponents in dynamical systems. Physica D 56: 185--187.

Elbert, T., W.J. Ray, Z.J. Kowalik, J.E. Skinner, K.E. Graf, & N. Birbaumer. 1994. Chaos and physiology: deterministic chaos in excitable cell assemblies. Physiological Reviews 74(1): 1-47.

Farmer, J.D. 1982. Information dimension and the probabilistic structure of chaos. Zeitschrift für Naturforschung 37a: 1304-1325.

Farmer, J.D., E. Ott, & J.A. Yorke. 1983. The dimension of chaotic attractors. Physica D 7: 153-180.

Fell, J., J. Röschke, & P. Beckmann. 1993. Deterministic chaos and the first positive Lyapunov exponent: a nonlinear analysis of the human electroencephalogram during sleep. Biological Cybernetics 69; 139-146.

Frank, G.W., T. Lookman, M.A.H. Nerenberg, C. Essex, J. Lemieux, & W. Blume. 1990. Chaotic time series analyses of epileptic seizures. Physica D 46: 427-438.

Fraser, A.M. & H.L. Swinney. 1986. Independent coordinates for strange attractors from mutual information. Physical Review A 33(2):1134-1140.

Gallez, D. & A. Babloyantz. 1991. Predictability of human EEG: a dynamical approach. Biological Cybernetics 64: 381-391.

Grassberger, P. 1983. Generalized dimensions of strange attractors. Physics Letters 97A(6): 227-230.

Grassberger, P. 1991. Information and complexity measures in dynamical systems in Atmanspracher H. & H. Scheingraber (ed.) Information Dynamics. Plenum Press. New York, 15-33.

Grassberger, P. & I. Procaccia. 1983a. Characterization of strange attractors. Physical Review Letters 50(5): 346-349

Grassberger, P. & I. Procaccia. 1983b. Estimation of the Kolmogorov entropy from a chaotic signal. Physical Review A 28(4): R2591-2593.

Grassberger, P. & I. Procaccia. 1983c. Measuring the strangeness of strange attractors. Physica D 9: 189-208.

Halsey, T.C., M.H. Jensen, L.P. Kadanoff, I Procaccia, & B.I. Shraiman. 1986. Fractal measures and their singularities: the characterization of strange sets. Physical Review A 33(2): 1141-1151.

Holzfuss, J. & W. Lauterborn. 1989. Liapunov exponents from a time series of acoustic chaos. Physical Review A 39(4): 2146-2152.

Holzfuss, J. & G. Mayer-Kress. 1986. An approach to error-estimation in the application of dimension al- gorithms in Mayer-Kress G. (ed.) Dimensions and entropies in chaotic systems. Springer-Verlag. Berlin. 114-122.

Kantz, H. & T. Schreiber. 1994. Dimension estimates and physiological data. Chaos 5(1): 143-154.

Kaplan, J.L. & J.A. Yorke. 1979. Numerical solution of a generalized eigenvalue problem for even mappings in Peitgen H.O. & H.O. Walter (ed.) Functional Differential Equations and Approximation of Fixed Points. Springer-Verlag, Berlin.

Kennel, M.B. & H.D.J. Abarbanel. 1996. False neigh- bors and false strands: a reliable minimum embedding dimension algortihm. In print.

Kennel, M.B., R. Brown, & H.D.I. Abarbanel. 1992. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Physical Review A 45(6): 3403-3411.

Landa, P.S. & M.G. Rozenblyum. 1989. Method for evaluating the embedding dimension of an attractor from experimental results. Sov. Phys. Tech. Phys. 34(1): 6-10.

Mañé, R. 1981. On the dimension of the compact in- variant sets of certain non-linear maps in Rand D. & L.-S. Young (ed.) Dynamical Systems and Turbulence. Lecture Notes in Mathematics. 898. Springer. Berlin. 230-242.

Mindlin, G.B., H.G. Solari, M.A. Natiello, R. Gilmore, & X.-J. Hou. 1991. Topological analysis of chaotic time series data from the Belousov-Zhabotinskii reaction. Journal of Nonlinear Science 1: 147-173.

MIT-BIH 1992. Polysomnographic Database. 2. ed., Biomedical Engineering Center at the Harvard-MIT Division of Health Sciences and Technology.

Molinari, L. & G. Dumermuth. 1992. Once more: di- mension and Lyapunov exponents for the human EEG in Jansen B.H. & M.E. Brandt (ed.) Second annual conference on nonlinear dynamical analysis of the EEG. World Scientific Publishing. Houston, 140-155.

Niedermeyer, E. 1993. Sleep and EEG in Niedermeyer E. & F.L.d. Silva (ed.) Electroencephalography: basic principles, clinical applications, and related fields. Williams and Wilkins. Baltimore. 153-166.

Oseledec, V.I. 1968. A multiplicative ergodic theorem. Ljapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc. 19: 197-231.

Packard, N.H., J.P. Crutchfield, J.D. Farmer, & R.S. Shaw. 1980. Geometry from a time series. Physical Review Letters 45(9): 712-716.

Palus, M. 1992. Testing for nonlinearity in the EEG in Jansen B.H. & M.E. Brandt (ed.) Second annual conference on nonlinear dynamical analysis of the EEG. World Scientific Publishing. Houston, 100-114.

Pesin, Y.B. 1977. Characteristic Lyapunov exponents and smooth ergodic theory. Russian Math. Surveys 32(4): 55-114.

Reilly, E.L. 1993. EEG recording and operation of the apparatus in Niedermeyer E. & F.L.d. Silva (ed.) Electroencephalography: basic principles, clinical applications, and related fields. Williams and Wilkins. Baltimore. 104-124.

Röschke, J. & J.B. Aldenhoff. 1992. A nonlinear ap- proach to brain function: deterministic chaos and sleep EEG. Sleep 15(2): 95-101.

Röschke, J. & J.B. Aldenhoff. 1993. Estimation of the dimensionality of sleep-EEG data in schizophrenics. European Archives of Psychiatry and Clinical Neuroscience 242: 191-196.

Schreiber, T. 1995. Efficient neighbor searching in non- linear time series analysis. International Journal of Biffurcation and Chaos 5(2):349-358.

Takens, F. 1981. Detecting strange attractors in turbulence in Rand D. & L.-S. Young (ed.) Dynamical Systems and Turbulence. Lecture Notes in Mathematics. 898. Springer, Berlin. 366-381.

Theiler, J. 1995. On the evidence for low-dimensional chaos in an epileptic electroencephalogram. Physics Letters A 196: 335-341.

Vastano, J.A. & E.J. Kostelich. 1986. Comparison of algorithms for determining Lyapunov exponents from experimental data in Mayer-Kress G. (ed.) Dimensions and entropies in chaotic systems. Springer-Verlag. Berlin. 100-107.

Wolf, A., J.B. Swift, H.L. Swinney, & J.A. Vastano. 1985. Determining Lyapunov exponents from a time series. Physica D 16: 285-317.

Yao, Q. & H. Tong, 1994. On prediction and chaos in stochastic systems. Phil. Trans. R. Soc. Lond. A 348: 357-369.

Young, L.-S. 1982. Dimension, entropy and Lyapunov ex- ponents. Ergod. Th. & Dynam. Sys. 2: 109-124.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2024 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales