Heterogeneidad de las células B de memoria IgM humanas
PDF

Cómo citar

Ángel, J. (2016). Heterogeneidad de las células B de memoria IgM humanas. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 40(154), 8–17. https://doi.org/10.18257/raccefyn.299

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

El origen, la función y el repertorio de las células B de memoria IgM humanas (caracterizadas por ser positivas para CD27 IgM e IgD) son controvertidos, y se ha propuesto que esta población es heterogénea. Aunque algunas veces contradictorias, las evidencias actuales apuntan a la existencia de por lo menos dos subpoblaciones de dichas células en sangre: por un lado, células B circulantes de la zona marginal del bazo, con algunas características similares a las células innatas y probablemente responsables de las respuestas de activación independiente de los linfocitos T, que protegen contra bacterias encapsuladas como Streptococcus sp, y, por otro lado, células B con indicios de haber pasado por centros germinales que se asemejan a las células B de la respuesta adaptativa, y que serían un reservorio de células B de larga vida a partir del cual se reconstituirían continuamente las células B de memoria conmutadas. Aunque se ha propuesto que la expresión diferencial de IgM e IgD en las células B de memoria IgM serviría para distinguir estas dos subpoblaciones de células B, se requieren más estudios fenotípicos y funcionales para sustentar esta clasificación. © 2016. Acad. Colomb. Cienc. Ex. Fis. Nat. Todos los derechos reservados.

https://doi.org/10.18257/raccefyn.299
PDF

Citas

Agematsu, K., Nagumo, H., Shinozaki, K., Hokibara, S., Yasui, K., Terada, K., Kawamura, N., Toba, T., Nonoyama, S., Ochs, H.D., Komiyama, A. (1998). Absence of IgD-CD27(+) memory B cell population in X-linked hyper-IgM syndrome. J Clin Invest 102 (4): 853-860.

Agematsu, K., Nagumo, H., Yang, F.C., Nakazawa, T., Fukushima, K., Ito, S., Sugita, K., Mori, T., Kobata, T., Morimoto, C., Komiyama, A. (1997). B cell subpopulations separated by CD27 and crucial collaboration of CD27+ B cells and helper T cells in immunoglobulin production. Eur J Immunol. 27 (8): 2073-2079.

Bagnara, D., Squillario, M., Kipling, D., Mora, T., Walczak, A.M., Da Silva, L., Weller, S., Dunn-Walters, D.K., Weill, J.C., Reynaud, C.A. (2015). A reassessment of IgM memory subsets in humans. J Immunol. 195 (8): 3716-3724.

Baumgarth, N. (2011). The double life of a B-1 cell: Self-reactivity selects for protective effector functions. Nat Rev Immunol. 11 (1): 34-46

Berkowska, M.A., Driessen, G.J., Bikos, V., Grosserichter-Wagener, C., Stamatopoulos, K., Cerutti, A., He, B., Biermann, K., Lange, J.F., van der Burg, M., van Dongen, J.J., van Zelm, M.C. (2011a). Human memory B cells originate from three distinct germinal center-dependent and -independent maturation pathways. Blood. 118 (8): 2150-2158.

Berkowska, M.A., van der Burg, M., van Dongen, J.J., van Zelm, M.C. (2011b). Checkpoints of B cell differentiation: Visualizing Ig-centric processes. Ann N Y Acad Sci. 1246: 11-25.

Capolunghi, F., Cascioli, S., Giorda, E., Rosado, M.M., Plebani, A., Auriti, C., Seganti, G., Zuntini, R., Ferrari, S., Cagliuso, M., Quinti, I., Carsetti, R. (2008). CpG drives human transitional B cells to terminal differentiation and production of natural antibodies. J Immunol. 180 (2): 800-808.

Cattoretti, G., Buttner, M., Shaknovich, R., Kremmer, E., Alobeid, B., Niedobitek, G. (2006). Nuclear and cytoplasmic AID in extrafollicular and germinal center B cells. Blood. 107 (10): 3967-3975.

Cerutti, A., Cols, M., Puga, I. (2013). Marginal zone B cells: Virtues of innate-like antibody-producing lymphocytes. Nat Rev Immunol. 13 (2): 118-132.

Chen, K., Cerutti, A. (2010). New insights into the enigma of immunoglobulin D. Immunol Rev. 237 (1): 160-179.

Colonna-Romano, G., Bulati, M., Aquino, A., Pellicano, M., Vitello, S., Lio, D., Candore, G., Caruso, C. (2009). A double-negative (IgD-CD27-) B cell population is increased in the peripheral blood of elderly people. Mech Ageing Dev. 130 (10): 681-690.

Della Valle, L., Dohmen, S.E., Verhagen, O.J., Berkowska, M.A., Vidarsson, G., Ellen van der Schoot, C. (2014). The majority of human memory B cells recognizing RhD and tetanus resides in IgM+ B cells. J Immunol. 193 (3): 1071-1079.

Descatoire, M., Weller, S., Irtan, S., Feuillard, J., Storck, S., Guiochon-Mantel, A., Bouligand, J., Morali, A., Cohen, J., Jacquemin, E., Iascone, M., Bole-Feysot, C., Cagnard, N., Weill, J.C., Reynaud, C.A. (2014). Identification of a human splenic marginal zone B cell precursor with NOTCH2-dependent differentiation properties. J Exp Med. 211 (5): 987-1000.

Dogan, I., Bertocci, B., Vilmont, V., Delbos, F., Megret, J., Storck, S., Reynaud, C.A., Weill, J.C. (2009). Multiple layers of B cell memory with different effector functions. Nat Immunol. 10 (12): 1292-1299.

Dunn-Walters, D.K., Isaacson, P.G., Spencer, J. (1995). Analysis of mutations in immunoglobulin heavy chain variable region genes of microdissected marginal zone (MGZ) B cells suggests that the MGZ of human spleen is a reservoir of memory B cells. J Exp Med. 182 (2): 559-566.

Ettinger, R., Sims, G.P., Robbins, R., Withers, D., Fischer, R.T., Grammer, A.C., Kuchen, S., Lipsky, P.E. (2007). IL-21 and BAFF/BLyS synergize in stimulating plasma cell differentiation from a unique population of human splenic memory B cells. J Immunol. 178 (5): 2872-2882.

Fecteau, J.F. & Neron, S. (2003). CD40 stimulation of human peripheral B lymphocytes: Distinct response from naive and memory cells.J Immunol. 171(9): 4621-4629.

Franco, M. & Greenberg, H. (2013). Rotavirus. Microbiol Spectrum. 1 (2).

Hendricks, J., Visser, A., Dammers, P.M., Burgerhof, J.G., Bos, N.A., Kroese, F.G. (2011). Class-switched marginal zone B cells in spleen have relatively low numbers of somatic mutations. Mol Immunol. 48 (6-7): 874-882.

Herrera, D., Rojas, O.L., Duarte-Rey, C., Mantilla, R.D., Ángel, J., Franco, M.A. (2014). Simultaneous assessment of rotavirus-specific memory B cells and serological memory after B cell depletion therapy with rituximab. PLoS One. 9(5): e97087.

Herrera, D., Vásquez, C., Corthésy, B., Franco, M.A., Ángel, J. (2013). Rotavirus specific plasma secretory immunoglobulin in children with acute gastroenteritis and children vaccinated with an attenuated human rotavirus vaccine. Hum Vaccin Immunother. 9 (11): 2409-2417.

Himmelmann, A., Gautschi, O., Nawrath, M., Bolliger, U., Fehr, J., Stahel, R.A. (2001). Persistent polyclonal B-cell lymphocytosis is an expansion of functional IgD(+)CD27(+) memory B cells. Br J Haematol. 114 (2): 400-405.

Jackson, S.M., Wilson, P.C., James, J.A., Capra, J.D. (2008). Human B cell subsets. Adv Immunol. 98: 151-224.

Kaji, T., Ishige, A., Hikida, M., Taka, J., Hijikata, A., Kubo, M., Nagashima, T., Takahashi, Y., Kurosaki, T., Okada, M., Ohara, O., Rajewsky, K., Takemori, T. (2012). Distinct cellular pathways select germline-encoded and somatically mutated antibodies into immunological memory. J Exp Med. 209 (11): 2079-2097.

Kendall, E.A., Tarique, A.A., Hossain, A., Alam, M.M., Arifuzzaman, M., Akhtar, N., Chowdhury, F., Khan, A.I., Larocque, R.C., Harris, J.B., Ryan, E.T., Qadri, F., Calderwood, S.B. (2010). Development of immunoglobulin M memory to both a T-cell-independent and a T-cell-dependent antigen following infection with Vibrio cholerae O1 in Bangladesh. Infect Immun. 78 (1): 253-259.

Khaskhely, N., Mosakowski, J., Thompson, R.S., Khuder, S., Smithson, S.L., Westerink, M.A. (2012). Phenotypic analysis of pneumococcal polysaccharide-specific B cells. J Immunol. 188 (5): 2455-2463.

Klein, U., Kuppers, R., Rajewsky, K. (1997). Evidence for a large compartment of IgM-expressing memory B cells in humans. Blood. 89 (4): 1288-1298.

Klein, U., Rajewsky, K., Kuppers, R. (1998). Human immuno-globulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J Exp Med. 188 (9): 1679-1689

Kruetzmann, S., Rosado, M.M., Weber, H., Germing, U., Tournilhac, O., Peter, H.H., Berner, R., Peters, A., Boehm, T., Plebani, A., Quinti, I., Carsetti, R. (2003). Human immunoglobulin M memory B cells controlling Streptococcus pneumoniae infections are generated in the spleen. J Exp Med. 197 (7): 939-945.

Lanzavecchia, A. & Sallusto, F. (2009). Human B cell memory. Curr Opin Immunol. 21 (3): 298-304.

Link, A., Zabel, F., Schnetzler, Y., Titz, A., Brombacher, F., Bachmann, M.F. (2012). Innate immunity mediates follicular transport of particulate but not soluble protein antigen. J Immunol. 188 (8): 3724-3733.

Martin, F. & Kearney, J.F. (2002). Marginal-zone B cells. Nat Rev Immunol. 2 (5): 323-335.

Martin, V., Wu, Y.C., Kipling, D., Dunn-Walters, D.K. (2015). Age-related aspects of human IgM B cell heterogeneity. Ann N Y Acad Sci. 1361 (1): 153-163.

Maurer, D., Fischer, G.F., Fae, I., Majdic, O., Stuhlmeier, K., Von Jeney, N., Holter, W., Knapp, W. (1992). IgM and IgG but not cytokine secretion is restricted to the CD27+ B lymphocyte subset. J Immunol. 148 (12): 3700-3705.

Moens, L., Wuyts, G., Boon, L., den Hartog, M.T., Ceuppens, J.L., Bossuyt, X. (2008). The human polysaccharide- and protein-specific immune response to Streptococcus pneumoniae is dependent on CD4(+) T lymphocytes, CD14(+) monocytes, and the CD40-CD40 ligand interac-tion. The Journal of allergy and clinical immunology. 122(6): 1231-1233.

Mroczek, E.S., Ippolito, G.C., Rogosch, T., Hoi, K.H., Hwangpo, T.A., Brand, M.G., Zhuang, Y., Liu, C.R., Schneider, D.A., Zemlin, M., Brown, E.E., Georgiou, G., Schroeder, H.W., Jr. (2014). Differences in the composition of the human antibody repertoire by B cell subsets in the blood. Frontiers in immunology. 5:96.

Nagelkerke, S.Q., aan de Kerk, D.J., Jansen, M.H., van den Berg, T.K., Kuijpers, T.W. (2014). Failure to detect functional neutrophil B helper cells in the human spleen. PLoS One. 9 (2): e88377.

Narváez, C.F., Feng, N., Vásquez, C., Sen, A., Ángel, J., Greenberg, H.B., Franco, M.A. (2012). Human rotavirus-specific IgM Memory B cells have differential cloning efficiencies and switch capacities and play a role in antiviral immunity in vivo. J Virol. 86 (19): 10829-10840.

Pape, K.A., Taylor, J.J., Maul, R.W., Gearhart, P.J., Jenkins, M.K. (2011). Different B cell populations mediate early and late memory during an endogenous immune response. Science. 331 (6021): 1203-1207.

Pascual, V., Liu, Y.J., Magalski, A., de Bouteiller, O., Banchereau, J., Capra, J.D. (1994). Analysis of somatic mutation in five B cell subsets of human tonsil. J Exp Med. 180 (1): 329-339.

Pillai, S. & Cariappa, A. (2009). The follicular versus marginal zone B lymphocyte cell fate decision. Nat Rev Immunol. 9 (11): 767-777.

Puga, I., Cols, M., Barra, C.M., He, B., Cassis, L., Gentile, M., Comerma, L., Chorny, A., Shan, M., Xu, W., Magri, G., Knowles, D.M., Tam, W., Chiu, A., Bussel, J.B., Serrano, S., Lorente, J.A., Bellosillo, B., Lloreta, J., Juanpere, N., Alameda, F., Baro, T., de Heredia, C.D., Toran, N., Catala, A., Torrebadell, M., Fortuny, C., Cusi, V., Carreras, C., Díaz, G.A., Blander, J.M., Farber, C.M., Silvestri, G., Cunningham-Rundles, C., Calvillo, M., Dufour, C., Notarangelo, L.D., Lougaris, V., Plebani, A., Casanova, J.L., Ganal, S.C., Diefenbach, A., Arostegui, J.I., Juan, M., Yague, J., Mahlaoui, N., Donadieu, J., Chen, K., Cerutti, A. (2012). B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat Immunol. 13 (2): 170-180.

Reynaud, C.A., Descatoire, M., Dogan, I., Huetz, F., Weller, S., Weill, J.C. (2012). IgM memory B cells: a mouse/human paradox. Cell Mol Life Sci. 69 (10): 1625-1634.

Reynaud, C.A. & Weill, J.C. (2012). Gene profiling of CD11b and CD11b B1 cell subsets reveals potential cell sorting artifacts. J Exp Med. 209 (3): 433-434; author reply: 434-436.

Richards, S.J., Morgan, G.J., Hillmen, P. (2000). Immuno-phenotypic analysis of B cells in PNH: Insights into the generation of circulating naive and memory B cells. Blood. 96 (10): 3522-3528.

Rojas, O.L., Caicedo, L., Guzmán, C., Rodríguez, L.S., Castañeda, J., Uribe, L., Andrade, Y., Pinzón, R., Narváez, C.F., Lozano, J.M., De Vos, B., Franco, M.A., Ángel, J. (2007). Evaluation of circulating intestinally committed memory B cells in children vaccinated with attenuated human rotavirus vaccine. Viral Immunol. 20 (2): 300-311.

Rojas, O.L., Narváez, C.F., Greenberg, H.B., Ángel, J., Franco, M.A. (2008). Characterization of rotavirus specific B cells and their relation with serological memory. Virology. 380(2): 234-242.

Rosado, M.M., Gesualdo, F., Marcellini, V., Di Sabatino, A., Corazza, G.R., Smacchia, M.P., Nobili, B., Baronci, C., Russo, L., Rossi, F., Vito, R.D., Nicolosi, L., Inserra, A., Locatelli, F., Tozzi, A.E., Carsetti, R. (2013). Preserved antibody levels and loss of memory B cells against pneumococcus and tetanus after splenectomy: Tailoring better vaccination strategies. Eur J Immunol. 43 (10): 2659-2670.

Rothstein, T.L. & Quach, T.D. (2015). The human counterpart of mouse B-1 cells. Ann N Y Acad Sci. 1362 (1): 143-162

Scheeren, F.A., Nagasawa, M., Weijer, K., Cupedo, T., Kirberg, J., Legrand, N., Spits, H. (2008). T cell-independent development and induction of somatic hypermutation in human IgM+ IgD+ CD27+ B cells. J Exp Med. 205 (9): 2033-2042.

Seguin, C.A., Draper, J.S., Nagy, A., Rossant, J. (2008). Establishment of endoderm progenitors by SOX transcrip-tion factor expression in human embryonic stem cells. Cell Stem Cell. 3 (2): 182-195.

Seifert, M. & Kuppers, R., (2009). Molecular footprints of a germinal center derivation of human IgM+(IgD+)CD27+ B cells and the dynamics of memory B cell generation. J Exp Med. 206 (12): 2659-2669

Seifert, M., Przekopowitz, M., Taudien, S., Lollies, A., Ronge, V., Drees, B., Lindemann, M., Hillen, U., Engler, H., Singer, B.B., Kuppers, R. (2015). Functional capacities of human IgM memory B cells in early inflammatory responses and secondary germinal center reactions. Proc Natl Acad Sci USA.112 (6): E546-555.

Shi, Y., Agematsu, K., Ochs, H.D., Sugane, K. (2003). Functional analysis of human memory B-cell subpopulations: IgD+CD27+ B cells are crucial in secondary immune response by producing high affinity IgM. Clin Immunol. 108 (2): 128-137.

Shi, Y., Yamazaki, T., Okubo, Y., Uehara, Y., Sugane, K., Agematsu, K. (2005). Regulation of aged humoral immune defense against pneumococcal bacteria by IgM memory B cell. J Immunol. 175 (5): 3262-3267.

Spencer, J., Finn, T., Pulford, K.A., Mason, D.Y., Isaacson, P.G.(1985). The human gut contains a novel population of B lymphocytes which resemble marginal zone cells. Clin Exp Immunol. 62 (3): 607-612.

Takemori, T., Kaji, T., Takahashi, Y., Shimoda, M., Rajewsky, K. (2014). Generation of memory B cells inside and outside germinal centers. Eur J Immunol. 44 (5): 1258-1264.

Tangye, S.G., Avery, D.T., Deenick, E.K., Hodgkin, P.D.(2003). Intrinsic differences in the proliferation of naive and memory human B cells as a mechanism for enhanced secondary immune responses. J Immunol. 170(2): 686-694.

Tangye, S.G. & Good, K.L. (2007). Human IgM+CD27+ B cells: memory B cells or “memory” B cells? J Immunol. 179 (1): 13-19.

Tangye, S.G., Liu, Y.J., Aversa, G., Phillips, J.H., de Vries, J.E.(1998). Identification of functional human splenic memory B cells by expression of CD148 and CD27. J Exp Med. 188(9): 1691-1703.

Taylor, J.J., Pape, K.A., Jenkins, M.K. (2012). A germinal center-independent pathway generates unswitched memory B cells early in the primary response. J Exp Med. 209 (3): 597-606.

Vásquez, C., Franco, M.A., Ángel, J. (2015). Rapid proliferation and differentiation of a subset of circulating IgM memory B cells to a CpG/Cytokine stimulus in vitro. PLoS One. 10(10): e0139718.

Vossenkamper, A., Blair, P.A., Safinia, N., Fraser, L.D., Das, L., Sanders, T.J., Stagg, A.J., Sanderson, J.D., Taylor, K., Chang, F., Choong, L.M., D’Cruz, D.P., Macdonald, T.T., Lombardi, G., Spencer, J. (2013). A role for gut-associated lymphoid tissue in shaping the human B cell repertoire. J Exp Med. 210 (9): 1665-1674.

Weill, J.C., Weller, S., Reynaud, C.A. (2009). Human marginal zone B cells. Annu Rev Immunol. 27: 267-285.

Weller, S., Braun, M.C., Tan, B.K., Rosenwald, A., Cordier, C., Conley, M.E., Plebani, A., Kumararatne, D.S., Bonnet, D., Tournilhac, O., Tchernia, G., Steiniger, B., Staudt, L.M., Casanova, J.L., Reynaud, C.A., Weill, J.C. (2004). Human blood IgM “memory” B cells are circulating splenic marginal zone B cells harboring a prediversified immunoglobulin repertoire. Blood. 104 (12): 3647-3654.

Weller, S., Faili, A., Garcia, C., Braun, M.C., Le Deist, F.F., de Saint Basile, G.G., Hermine, O., Fischer, A., Reynaud, C.A., Weill, J.C. (2001). CD40-CD40L independent Ig gene hypermutation suggests a second B cell diversifi-cation pathway in humans. Proc Natl Acad Sci USA. 98(3): 1166-1170.

Weller, S., Mamani-Matsuda, M., Picard, C., Cordier, C., Lecoeuche, D., Gauthier, F., Weill, J.C., Reynaud, C.A.(2008). Somatic diversification in the absence of antigen-driven responses is the hallmark of the IgM+ IgD+ CD27+ B cell repertoire in infants. J Exp Med. 205 (6): 1331-1342.

Wesemann, D.R., Portuguese, A.J., Meyers, R.M., Gallagher, M.P., Cluff-Jones, K., Magee, J.M., Panchakshari, R.A., Rodig, S.J., Kepler, T.B., Alt, F.W. (2013). Microbial colonization influences early B-lineage development in the gut lamina propria. Nature. 501 (7465): 112-115.

Wirths, S. & Lanzavecchia, A. (2005). ABCB1 transporter discriminates human resting naive B cells from cycling transitional and memory B cells. Eur J Immunol. 35 (12): 3433-3441.

Wu, Y.C., Kipling, D., Leong, H.S., Martin, V., Ademokun, A.A., Dunn-Walters, D.K. (2010). High-throughput immuno-globulin repertoire analysis distinguishes between human IgM memory and switched memory B-cell populations. Blood. 116 (7): 1070-1078.

Yates, J.L., Racine, R., McBride, K.M., Winslow, G.M. (2013). T cell-dependent IgM memory B cells generated during bacterial infection are required for IgG responses to antigen challenge. J Immunol. 191 (3): 1240-124

Declaración de originalidad y cesión de derechos de autor

Los autores declaran:

  1. Los datos y materiales de referencia publicados han sido debidamente identificados con sus respectivos créditos y han sido incluidos en las notas bibliográficas y citas que así se han identificado y que de ser requerido, cuento con todas las liberaciones y permisos de cualquier material con derechos de autor.
  2. Todo el material presentado está libre de derechos de autor y acepto plena responsabilidad legal por cualquier reclamo legal relacionado con la propiedad intelectual con derechos de autor, exonerando completamente de responsabilidad a la Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.
  3. Este trabajo es inédito y no será enviado a ninguna otra revista mientras se espera la decisión editorial de esta revista. Declaro que no hay ningún conflicto de intereses en este manuscrito.
  4. En caso de publicación de este artículo, todos los derechos de autor son transferidos a la Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, por lo que no puede ser reproducido de ninguna forma sin el permiso expreso de la misma.
  5. Mediante este documento, si el artículo es aceptado para publicación por la Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, la Revista asume el derecho de editar y publicar los artículos en índices o bases de datos nacionales e internacionales para académicos y uso científico en formato papel, electrónico, CD-ROM, internet ya sea del texto completo o cualquier otra forma conocida conocida o por conocer y no comercial, respetando los derechos de los autores.

Transferencia de derechos de autor

En caso de que el artículo sea aprobado para su publicación, el autor principal en representación de sí mismo y sus coautores o el autor principal y sus coautores deberán ceder los derechos de autor del artículo correspondiente a la Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, excepto en los siguientes casos:

Los autores y coautores se reservan el derecho de revisar, adaptar, preparar trabajos derivados, presentaciones orales y distribución a algunos colegas de reimpresiones de su propio trabajo publicado, si se otorga el crédito correspondiente a la Revista de la Academia Colombiana de Ciencias. Exactas, Físicas y Naturales. También está permitido publicar el título de la obra, resumen, tablas y figuras de la obra en los sitios web correspondientes de los autores o sus empleadores, dando también crédito a la Revista.

Si el trabajo se ha realizado bajo contrato, el empleador del autor tiene el derecho de revisar, adaptar, preparar trabajos derivados, reproducir o distribuir en papel el trabajo publicado, de manera segura y para uso exclusivo de sus empleados.

Si la Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales fuera solicitada por un tercero para el uso, impresión o publicación específica de artículos ya publicados, la Revista debe obtener el permiso expreso del autor y coautores de la trabajo o del empleador excepto para uso en aulas, bibliotecas o reimpreso en un trabajo colectivo. La Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales se reserva el posible uso en su portada de figuras entregadas con los manuscritos.

La Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales no puede reclamar ningún otro derecho que no sea el de autor.