Análisis de la relación entre variables morfométricas y biofísicas en la estimación de características probabilísticas para la oferta hídrica superficial en Colombia
PDF

Archivos suplementarios

Tabla 1S

Cómo citar

Burbano-Girón, J., Domínguez, E., & Barón-Ruiz, O. (2016). Análisis de la relación entre variables morfométricas y biofísicas en la estimación de características probabilísticas para la oferta hídrica superficial en Colombia. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 40(156), 514–526. https://doi.org/10.18257/raccefyn.291

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

Actualmente, el recurso hídrico superficial enfrenta una alta presión antrópica por las transformaciones del paisaje natural y los altos niveles de demanda de agua de las actividades socioeconómicas. Ante esta situación, la modelación integrada del ciclo hidrológico se convierte en una herramienta necesaria para evaluar y predecir las consecuencias de las transformaciones del paisaje sobre los elementos del ciclo hidrológico. Su exitosa aplicación depende de la disponibilidad de información y la escala de estudio. Con base a lo anterior, se determinó que la información existente actualmente en el país no permite aplicar con rigurosidad ninguno de ellos, por ende se trabajó en un modelo estadístico de Análisis de Componentes Principales para relacionar información morfométrica, biofísica e hidrológica derivada para la caracterización de 421 cuencas generadas en Colombia. El 91% de las cuencas tuvo un error relativo respecto al área de la cuenca reportada por el Instituto de Hidrología, Meteorología y Estudios ambientales (IDEAM) inferior al 15%, y la significancia de las relaciones entre las variables hidrológicas, morfométricas y biofísicas fue en la gran mayoría de los casos significativa. Lo anterior valida aun las relaciones establecidas, señalando que los resultados del modelo estadístico construido, permiten estimar la oferta hídrica en lugares sin registro hidrológico a través de los parámetros morfométricos y biofísicos de las cuencas sin instrumentación hidrológica. © 2016. Acad. Colomb. Cienc. Ex. Fis. Nat. Todos los derechos reservados.

https://doi.org/10.18257/raccefyn.291
PDF

Citas

Beasley, D. B., Knisel, W. G., Rice, A. P. (Eds.). 1991. Proceedings of the Creams/Gleams Symposium: September 27-29, 1989

Athens, Georgia. UGA-CPES-Agricultural Engineering Department, University of Georgia, Tifton, Georgia, USA.

Bruijnzeel, L. A. 1990. Hydrology of moist tropical forests and effects of conversion: a state of knowledge review. Faculty of Earth Sciences. Free University, Amsterdam, The Netherlands.

Burbano-Girón, J., Domínguez, E., Etter, A. 2009. Modelación del efecto de escenarios de cobertura sobre la migración de nutrientes (N, P2O5) en la cuenca alta del río Magdalena (Huila, Colombia). Ingeniería y universidad 13: 7.

Chow, V. T., Maidment, D. R., Mays, L. W. 1994. Hidrología aplicada. McGraw-Hill, Bogotá, Colombia.

Departamento Administrativo Nacional de Estadística - DANE. 2008. Censo General 2005 Nivel Nacional. Departamento Administrativo Nacional de Estadística, Bogotá, Colombia.

Dolgonosov, B. M., Korchagin, K. A. 2007. A nonlinear stochastic model describing the formation of daily and mean monthly water flow in river basins. Water Resources 34: 624-634.

Domínguez, E. 2004. Aplicación de la ecuación de Fokker– Planck–Kolmogorov para el pronóstico de afluencias a embalses hidroeléctricos (caso práctico de la represa de Betania). Meteorología Colombiana 8: 17-26.

Domínguez, E., Hassidoff, A., León, J., Ivanova, Y., Rivera, H. 2009. Maximal, Minimal and Mean Surface Runoff in Colombia: How is it Distributed? Journal of Environmental Hydrology 17.

Domínguez, E., Ivanova, Y. 2005. Un modelo estocástico para la evaluación hidrológica en alta montaña, bajo condiciones de cambio climático (caso de estudio – páramo de Las Hermosas). Pages 17-30. Bogota.

Domínguez, E., Moreno, J., Ivanova, Y. 2010. Water scarcity in a tropical country?-revisiting the Colombian water resources. International Association of Hydrological Sciences 340: 335-342.

Domínguez, E., Rivera, H. G. 2010. A Fokker--Planck-- Kolmogorov equation approach for the monthly affluence forecast of Betania hydropower reservoir. Journal of hydroinformatics 12: 486-501.

Domínguez, E., Rivera, H. G., Sarmiento, R. V., Moreno, P. 2008.

Relaciones Demanda-Oferta de Agua y el Índice de Escasez de Agua como Herramientas de Evaluación del Recurso Hídrico Colombiano. Rev. Acad. Colomb. Cienc. XXXII.

Downer, C. W., Ogden, F. L. 2004. GSSHA: Model To Simulate Diverse Stream Flow Producing Processes. Journal of Hydrologic Engineering 9: 161-174.

Environmental Systems Resource Institute - ESRI. 2008. ArcGIS. ESRI, Redlans, California, USA. Retrieved from

http://www.esri.com/.

Etter, A., Van Wyngaarden, W. 2000. Patterns of landscape transformation in Colombia, with emphasis in the Andean region. AMBIO: A Journal of the Human Environment 29: 432-439.

Etter, A., Villa, L. A. 2000. Andean forests and farming systems in part of the Eastern Cordillera (Colombia). Mountain Research and Development 20: 236-245.

Etter, A., McAlpine, C. 2008. Chapter 5. Modeling Unplanned Land Cover Change across ScalesModeling Unplanned Land Cover Change across Scales. Pages 81-98 in M.

J. Hill and R. J. Aspinall, editors. Land Use Change. Science, Policy and Management. CRC Press, Boca Raton, Florida, USA. Retrieved from http://dx.doi.org/10.1201/9781420042979.ch5.

Etter, A., McAlpine, C., Wilson, K., Phinn, S. and Possingham, H. 2006. Regional patterns of agricultural land use and deforestation in Colombia. Agriculture, Ecosystems y Environment 114: 369-386. doi:10.1016/j.agee.2005.11.013.

Freeman, M. C., Pringle, C. M., Jackson, C. R. 2007. Hydrologic connectivity and the contribution of stream headwaters to ecological integrity at regional scales1. JAWRA Journal of the American Water Resources Association 43: 5-14.

Frolov, A. V. 2006. Dynamic-stochastic modeling of long-term variations in river runoff. Water resources 33: 483-493.

Frolov, A. V., Vyruchalkina, T. Y., Solomonova, I. V. 2003. Dynamic–Stochastic Modeling of Rivers Rising from Lakes. Water Resources 30:627-631.

Goodrich, D. C., Unkrich, C. L., Smith, R. E., Woolhiser, D. A. 2006. KINEROS2-new features and capabilities. Page Proceedings of the Joint Federal Interagency Conference.

Habets, F., Noilhan, J., Golaz, C., Goutorbe, J. P., Lacarrère, P., Leblois, E., Ledoux, E., Martin, E., Ottlé, C., Vidal-Madjar, D. 1999a. The ISBA surface scheme in a macroscale hydrological model applied to the Hapex-Mobilhy area: Part I: Model and database. Journal of Hydrology 217:75-96. doi: doi: DOI: 10.1016/S0022-1694(99)00019-0.

Habets, F., Noilhan, J., Golaz, C., Goutorbe, J. P., Lacarrère, P., Leblois, E., Ledoux, E., Martin, E., Ottlé, C., Vidal-Madjar, D. 1999b. The ISBA surface scheme in a macroscale hydrological model applied to the Hapex- Mobilhy area: Part II: Simulation of streamflows and annual water budget. Journal of Hydrology 217: 97-118. doi: doi: Doi: 10.1016/S0022-1694(99)00020-7.

Instituto de Hidrología, Meteorología y Estudios ambientales - IDEAM. 2008. Estudio Nacional del Agua. IDEAM. Instituto Geográfico Agustín Codazzi - IGAC. 2002. Atlas de Colombia. Instituto Geográfico Agustín Codazzi, Bogota.

Jarvis, A., Rubiano, J., Nelson, A., Farrow, A., Mulligan, M. 2004. Practical use of SRTM data in the tropics: comparisons with digital elevation models generated from cartographic data. Centro Internacional de Agricultura Tropical - CIAT. 32.

Johnson, R. 1998. The forest cycle and low river flows: a review of UK and international studies. Forest Ecology and Management 109: 1-7.

Karasev, I. F. 2008. The ecological regime based nomenclature of water discharges in river systems. Russian Meteorology and Hydrology 33: 670-675.

Knisel, W. G. 1980. CREAMS: A field-scale model for non-point source pollution evaluation. Pages 11-13 Proc. Non-point Pollution Control Tools and Techniques for the Future Symposium. Gettysburg, PA. June.

Konovalov, V. G. 2007. Long-term changes of water balance components in the basins of rivers fed by snow and ice. Russian Meteorology and Hydrology 32: 529-537.

Leonard, R. A., Knisel, W. G., Still, D. A. 1987. GLEAMS: Groundwater loading effects of agricultural management systems. Trans. ASAE 30:1403-1428.

Lindström, G. 1997. A simple automatic calibration routine for the HBV model. Nordic hydrology 28: 153-168.

Lørup, J.K., Refsgaard, J.C. y Mazvimavi, D. (1998) Assessing the effect of land use change on catchment runoff by combined use of statistical tests and hydrological modelling: Case studies from Zimbabwe. Journal of Hydrology, 205:147-163.

Martin, P. H., LeBoeuf, E. J., Dobbins, J. P., Daniel, E. B., Abkowitz, M. D. 2005. Interfacing GIS with Water Resource Models: A State-Of-The-Art Review. JAWRA Journal of the American Water Resources Association. 41:1471-1487.

Mesa, O., Poveda, G., Carvajal, L. F. 1997. Introducción al Clima de Colombia. Universidad Nacional de Colombia, Medellín, Colombia.

Noilhan, J., and J.-F. Mahfouf. 1996. The ISBA land surface parameterisation scheme. Global and Planetary Change. 13:145-159. Doi: doi: DOI: 10.1016/0921-8181(95)00043-7.

Patton, P. C. 1988. Drainage Basin Morphometry and Floods. Pages 51-64 in V. R. Baker, R. C. Kochel, and P. C. Patton, editors. Flood Geomorphology. Wiley-Interscience.

Peña, D. 2002. Análisis de datos multivariantes. McGraw-Hill Interamericana de España, Madrid, España.

Python Software Foundation. 2008. Python 2.6. Python Software Foundation. R Development Core Team. 2011.

R: A language and environment for statistical computing. R Foundation for Statistical

Computing, Vienna, Austria. Retrieved from http://www.Rproject.org/.

Samokhin, A., y Saloviov, N. (1980). Hydrology Handbook (First Edition.). Leningrad: Guidrometeoizdat, 296 p.

Singh, V. P., and D. K. Frevert (Eds.). 2002a. Mathematical models of large watershed hydrology. Water Resources Publications, Highlands Ranch, Colorado, USA.

Singh, V. P., and D. K. Frevert (Eds.). 2002b. Mathematical models of small watershed hydrology and applications.

Water Resources Publications, Highlands Ranch, Colorado,USA.

Singh, V. P. (Ed.). 1995. Computer models of watershed hydrology. Water Resources Publications, Highlands Ranch, Colorado, USA.

Singh, V. P., y D. K. Frevert. 2006. Chapter 1. Introduction. Páginas 2-19 en V. P. Singh y D. K. Frevert, editores. Watershed Models. CRC Press.

Singh, V. P., y D. K. Frevert (Eds.). 2006. Watershed Models. CRC Press.

USACE - US Army Corps of Engineers, HEC - Hydrologic Engineering Centre. 2009. Geospatial hydrologic modeling extension HEC-GeoHMS. Davis, California, USA.

Validation Team: METI/ERSDAC, NASA/LPDAAC, USGS/EROS. 2009. ASTER Global DEM Validation, Summary Report. Retrieved from http://www.ersdac.or.jp/GDEM/E/image/ASTERGDEM_ValidationSummaryReport_Ver1.pdf, last access April 2010.

Viessman, W., and G. L. Lewis. 1996. Introduction to hydrology. HarperCollins College Publishers, New York, USA.

Viney, N., and M. Sivapalan. 2000. LASCAM: The large scale catchment model, User Manual, version 2. Centre for Water Research, University of Western Australia.

Wilk, J., L. Andersson, and V. Plermkamon. 2001. Hydrological impacts of forest conversion to agriculture in a large river basin in northeast Thailand. Hydrological Processes. 15:2729-2748.

Yang, J., Reichert, P., Abbaspour, K.C. & Yang, H. (2007) Hydrological modelling of the Chaohe Basin in China: Statistical model formulation and Bayesian inference. Journal of Hydrology. 340: 167-182.

Zammit, C., M. Sivapalan, N. Viney, and M. Bari. 2003. Improvement of physical basis of conceptual model, LASCAM, with explicit inclusion of within catchment heterogeneity of landscape attributes. Pages 921-926.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2016 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales