Resumen
En este trabajo, fueron oxidadas secciones pulidas de muestras relativamente puras de pirita y calcopirita, tomadas de las minas de oro San Antonio (Marmato, Caldas) y La Chorrera (Cisneros, Antioquia). Las muestras fueron tratadas usando la cepa de Acidithiobacillus ferrooxidans ATCC 23270 y fueron analizadas usando un espectrómetro Raman. Se pudieron detectar diversos recubrimientos minerales sobre los sulfuros tratados. Estos resultados muestran que la generación de recubrimientos es bastante dinámica y cambiante en el tiempo y es más compleja que los reportes que se encuentran en la literatura.
Palabras clave
Citas
Ahonnen, L., Hiltunen, P., Tuovinen, O.H. 1986. The role of pyrrhotite and pyrite in the bacterial leaching of chalcopyrite. Ebner, H.G. (Eds.), Fundamental and Applied Biohydrometallurgy. Elsevier, Amsterdam, 13–22.
Al-Harahsheh, M., Kingman, S., Rutten, F., Briggs, D. 2006. ToF-SIMS and SEM study on the preferential oxidation of chalcopyrite. International Journal of Mineral Processing 80: 2-4.
Bevilaqua, D., Leite, A.L.L.C., Garcia, Jr. O., Tuovinen, O.H. 2002. Oxidation of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in shake flasks. Process Biochemistry 38:587-592.
Blight, K., Ralph, D.E., Thurgate, S. 2000. Pyrite surfaces after bio-leaching: a mechanism for bio-oxidation. Hydrometallurgy 58: 227–237.
Curutchet, G., Tedesco, P., Donati, E. 1996. Combined degradation of covellite by Thiobacillus thiooxidans and Thiobacillus ferrooxidans. Biotechnology Letters 18: 1471-1476
Dopson, M., Lindström, E.B. 1999. Potential role of Thiobacillus caldus in arsenopyrite bioleaching. Appl. Environ. Microbiol. 65: 36-40.
Downs, R.T. 2006. The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. Program and Abstracts of the 19th General Meeting of the International Mineralogical Association in Kobe, Japan. O03-13.
Dutrizac, J.E. 2008. Factors affecting the precipitation of potassium jarosite in sulfate and chloride media. Metallurgical and Materials Transactions B. 39: 771–783.
Fowler, T.A., Crundwell, F.K. 1999. Leaching of zinc sulfide by Thiobacillus ferrooxidans: bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions. Appl Environ Microbiol. 65(12): 5285-92.
Garcia, O., Bigham, J.M., Tuovinen, O.H. 1995. Oxidation galena by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Canadian Journal Microbiology 41: 508-514.
Garcia, O., Bigham, J.M., Tuovinen, O.H. 1995. Sphalerite oxidation by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Canadian Journal Microbiology 41: 578-584.
He, H., Xia, J.L., Hong, F.F., Tao, X.X., Leng, Y.W., Zhao, Y.D. 2012. Analysis of sulfur speciation on chalcopyrite surface bioleached with Acidithiobacillus ferrooxidans. Minerals Engineering, 27–28: 60–64
Laetsch, T., Downs, R.T. 2006. Software for identification and refinement of cell parameters from powder diffraction data of minerals using the RUFF Project and American Mineralogist Crystal Structure databases. Abstracts from the 19th General Meeting from the International Mineralogical Association, Kobe, Japan, 23-28 July 2006.
Liu, H., Gu, G., Xu, Y. 2011. Surface properties of pyrite in the course of bioleaching by pure culture of Acidithiobacillus ferrooxidans and a mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Hydrometallurgy, 108: 143-148.
Márquez, M., Gaspar, J., Bessler, K.E., Magela, G. 2006. Process mineralogy of bacterial oxidized gold ore in São Bento Mine (Brasil). Hydrometallurgy, 83: 114-123.
Márquez, M.A. 1999. Mineralogia dos produtos de oxidação sob pressão e bacteriana do minério de ouro da mina São Bento - MG. Tesis de doctorado, Universidade de Brasília. 271 p.
Marsden, J., House, I. 1992. The chemistry of gold extraction. Ed. Ellis Horwood Limited, England.
McGuire, M.M., Banfield, J.F., Hamers, R.J. 2001. Quantitative determination of elemental sulfur at the arsenopyrite surface after oxidation by ferric iron: mechanistic implications. Geochem. Trans. 2001a. 2: 25.
Ossa, D.M., Márquez, M.A. 2010. Jarosite pseudomorph formation from arsenopyrite oxidation using Acidithiobacillus ferrooxidans. Hydrometallurgy, 104: 162-168
Parker, G.K., Woods, R., Hope, A.G. 2008. Raman investigation of chalcopyrite oxidation. Colloids and Surfaces A: Physicochem. Eng. Aspects. 318:60–16.
Rodríguez, Y., Ballester, A., Blázquez, M.L., González, F., Muñoz, J.A. 2003. New information on the pyrite bioleaching mechanism at low and high temperature. Hydrometallurgy 71: 37–46.
Sasaki, K., Nakamuta, Y., Hirajima, T. 2009. Raman characterization of secondary minerals formed during chalcopyrite leaching with Acidithiobacillus ferrooxidans. Hydrometallurgy 95: 153–158.
Sasaki, K., Tsunekawa, M., Ohtsuka, T., Konno, H. 1998. The role of sulfur-oxidizing bacteria Thiobacillus thiooxidans in pyrite weathering. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 133: 269-278
Smith, A.M.L., Hudson-Edwards, K.A., Dubbin, W.E., Wright, K. 2006. Dissolution of jarosite [KFe3(SO4)2(OH)6] at pH 2 and 8: Insights from batch experiments and computational modelling. Geochimica et Cosmochimica Acta 70: 608–621.
Welch, S.A., Kirste, D., Christy, A.G., Beavis, F.R., Beavis, S.G. 2008. Jarosite dissolution II—Reaction kinetics, stoichiometry and acid flux. Chemical Geology 254: 73-86.
Zapata, D.M., Márquez, M.A., Ossa, D.M. 2007. Sulphur product layer in sphalerite biooxidation: Evidences for a mechanism of formation. Advanced Materials Research. 20-21: 134–138.
Zhu, X.M., Li, J., Bodily, D.M., Wadsworth, M.E. 1993. Transpassive oxidation of pyrite. J. Electrochem. Soc. 140: 1927–1935.
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales