Resumen
Las cuencas hidrográficas en Bogotá D.C. son complejos sistemas ambientales que han sufrido graves alteraciones dadas por la urbanización, la actividad agrícola y ganadera, y actividades industriales. El objetivo de este estudio fue comparar el estado de dos cuencas urbanas en Bogotá D.C. en el sistema Córdoba - Juan Amarillo, a través de algunos indicadores de salud y calidad de suelos, las actividades enzimáticas: deshidrogenasa, fosfatasa alcalina, fosfatasa ácida y o-difenol oxidasa, y las fracciones de carbono activo, para evaluar su condición. Se recomienda el uso de dichas actividades como parámetro de evaluación en programas de manejo ambiental para el sistema.
Referencias
Acosta-Martínez, V. & Tabatabai, M.A. 2000. Enzyme activities in a limed agricultural soil. Biology and Fertily of Soils 31:85-91.
Benítez, E., Melgar, R. & Nogales, R. 2004. Estimating soil resilience to a toxic organic waste by measuring enzyme activities. Soil Biology and Biochemistry 36:1615-1623.
Blair, G.J., Lefroy, R.D.B. & Lisle, L. 1995. Soil carbon fraction based in their degree of oxidation and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research 46:1459-1466.
Brown, J.S., Sutula, M., Stransky, C., Rudolph, J. & Byron, E. 2010. Sediment Contaminant Chemistry and Toxicity of Freshwater Urban Wetlands in Southern California. Journal of the American Water Resources Association 46:367-385.
Brzeziñska, M., Stêpniewska, Z. & Stêpniewski, W. 2001. Dehydrogenase and Catalase Activity of Soil Irrigated with Municipal Wastewater. Polish Journal of Environmental Studies. 10:307-311.
Beare, M.H., Coleman, D.C., Crossley, D.A., Hendrix, P.F. & Odum, E.P. 1995. A hierarchical approach to evaluating the significance of soil biodiversity to biogeochemical cycling. Plant and Soil 170:5-22.
Burns, R.G. 1982. Enzyme activity in soil: location and a possible role in microbial ecology. Soil Biology and Biochemistry 14: 423-427.
Caldwell, B.A. 2005. Enzyme activities as a component of soil biodiversity: A review. Pedobiologia 49:637-644.
Canet, R., Albiach, R. & Pomares, F. 2000. Indexes of Biological Activity as Tools for Diagnosing Soil Fertility In Organic Farming. In: Garcia C, Hernández T, editores. Research and Perspectives of Soil Enzymology in Spain. Murcia, Spain 7 Cebas-CSIC; p. 27-39.
Capasso, R., Evidente, A., Schivo, L., Orru, G., Marcialis, M.A. & Cristinzio, G. 1995. Antibacterial polyphenols from olive oil mill waste waters. Journal of Applied Bacteriology 79:393-398.
Carreira, J.A., Viñegla, B., García-Ruiz, R., Ochoa, V. & Hinojosa, M.B. 2008. Recovery of biochemical functionality in polluted flood-plain soils: The role of microhabitat differentiation through revegetation and rehabilitation of the river dynamics. Soil Biology and Biochemistry 40:2088-2097.
Caravaca, F., Alguacil, M.M., Torres, P. & Roldán, A. 2005. Plant type mediates rhizospheric microbial activities and soil aggregation in a semiarid Mediterranean salt marsh. Geoderma 124:375-382.
Casida, L.E.Jr., Klein, D.A. & Santoro, T. 1964. Soil Dehydrogenase Activity. Soil Science 98:371-376.
Castaño, M. 2002. Verdades sobre el Humedal de Córdoba. Entre Juncos Boletín de la Red de Humedales de la Sabana de Bogotá. No. 5. p.p 3
Cerón Rincón, L.E. & Melgarejo, L.M. 2005. Enzimas de suelo: indicadores de salud y calidad. Acta Biológica Colombiana. 10:5-17.
Cerón Rincón L.E., & Ramírez, E. 2011. Actividad microbiana en el río Arzobispo. Agronomía Colombiana. (En prensa).
Chen, W., Wu, L., Frankenberger, W.T.Jr. & Chang, A.C. 2008. Soil Enzyme Activities of Long-Term Reclaimed Wastewater-Irrigated Soils. Journal of Environmental Quality 37:S-36-S-42.
DAMA Departamento Administrativo del Medio Ambiente. 2006. Política de Humedales. ©Alcaldía Mayor de Bogotá.
DAMA Departamento Administrativo del Medio Ambiente. 2008. Plan de Manejo del Humedal Córdoba. ©Alcaldía Mayor de Bogotá.
DAMA Departamento Administrativo del Medio Ambiente. 2010. Plan de Manejo del Humedal Juan Amarillo. ©Alcaldía Mayor de Bogotá.
Dick A. & Tabatabai, M.A. 1992. Significance and Potential Use of Soil Enzymes. En: Meeting, FJB (Ed.). Soil Microbial Ecology: Applications in Agriculture and Environmental Management. Marcel Deckker, NY, USA. pp. 95-127.
Doi, R. & Ranamukhaarachchi, S.L. 2009. Soil dehydrogenase in a land degradation-rehabilitation gradient: observations from a savanna site with a wet/dry seasonal cycle. Revista de Biología Tropical 57:223-234.
Doran J.W. 2002. Soil Health and Global Sustainability Translating Science into Practice. Agriculture Ecosystems Environment. 88:119-127.
Doran J.W & Zeiss, M.R. 2000. Soil Health and Sustaninability: Managing the Biotic Component of Soil Quality. Applied Soil Ecology 15:3-11.
Eivazi, F. & Tabatabai, M.A. 1977. Phosphatases in soils. Soil Biology & Biochemistry 9:167-172.
Freeman, C., Ostle, N.J., Fenner, N. & Kang, H. 2004. A regulatory role for phenol oxidase during decomposition in peatlands. Soil Biology and Biochemistry 36:1663-1667.
Gagnon, V., Chazarenc, F., Comeau, Y. & Brisson, J. 2007. Influence of macrophyte species on microbial density and activity in constructed wetlands. Water Science and Technology 56:249-254.
García, C., Hernández, T., Costa, F. 1997. Potencial use of dehydrogenase activity as an index of microbial activity in degraded soils. Communications in Soil Science and Plant Analyses 28:123-134.
Gianfreda, L., Rao, M.A., Piotrowska, A., Palumbob, G. & Colombob, C. 2005. Soil enzyme activities as affected by anthropogenic alterations: intensive agricultural practices and organic pollution. Science of the Total Environment 341:265-279.
Gressel, N. & McColl, J.G. 2003. Phosphorus mineralization and organic matter decomposition: a critical review. Driven by Nature: Plant Litter Quality and Decomposition (eds G.Cadisch & K.E.Giller), CAB International, Wallingford, UK. pp. 297-309.
Güsewell, S. & Freeman, C. 2005. Nutrient limitation and enzyme activities during litter decomposition of nine wetland species in relation to litter N:P ratios. Functional Ecology 19:582-593.
Hernández, M.E. 2010. Suelos de Humedales Como Sumideros De Carbono y Fuentes de Metano. Terra Latinoamericana 28:139-147.
Hill, B.H., Elonen, C.M., Jicha, T.M., Cotter, A.M., Trebitz, A.S. & Danz, N.P. 2006. Sediment microbial enzyme activity as an indicator of nutrient limitation in Great Lakes coastal wetlands. Freshwater Biology 51:1670-1683.
Jezierska-Tys, S. & Fr c, M. 2009. Impact of dairy sewage sludge on enzymatic activity and inorganic nitrogen concentrations in the soils. International Agrophysics 23:31-37.
Kang, H., Lee, S.H., Lee, S.M. & Jung, S. 2009. Positive relationships between phenol oxidase activity and extractable phenolics in estuarine soils. Chemistry and Ecology 25:99-106.
Kang, H & Stanley, E.H. 2005. Effects of levees on soil microbial activity in a large river floodplain. River Research and Applications 21:19-25.
Kang, H. & Freeman, C. 1999. Phosphatase and arylsulphatase activities in wetland soils: annual variation and controlling factors. Soil Biology and Biochemistry 31:449-454.
Kibblewhite, M.G., Ritz, K. & Swift, J. 2008. Soil health in agricultural systems. Philosophical Transactions of the Royal Society B 363:685-701.
Maliszewska-Kordybuch, B. & Smreczek, B. 2003. Habitat function of agricultural soils as affected by heavy metals and polycyclic aromatic hydrocarbons contamination. Environment International 28:719-728.
Monkiedje, A., Spiteller, M., Fotio, D. & Sukul, P. 2006. The effect of land use on soil health indicators in peri-urban agriculture in the humid forest zone of southern Cameroon. Journal of Environmental Quality 35:2402-2409.
Palacio, D., Hurtado, R. & Garavito, L. 2003. Redes Socio-ambientales en tensión: El caso de la gestión ambiental de los humedales de Bogotá. REDES- Revista hispana para el análisis de redes sociales 4:1-31.
Penton, C.R., & Newman, S. 2008. Enzyme-based resource allocated decomposition and landscape heterogeneity in the Florida everglades. Journal of Environmental Quality 37:972-976.
Peruzzi, E. Masciandaro, G., Macci, C., Doni, S., Mora Ravelo, S.G., Peruzzi, P. & Ceccanti, B. 2011. Heavy metal fractionation and organic matter stabilization in sewage sludge treatment wetlands. Ecological Engineering 37:771-778.
Perucci, P., Casucci, C. & Dumontet, S. 2000. An improved method to evaluate the o-diphenol oxidase activity of soil. Soil Biology and Biochemistry 32:387-399.
Ramos-Cormenzana, A., Juarez-Jiménez, B. & Garcia-Pareja, M.P. 1996. Antimicrobial activity of olive mill wastewaters (alpechin) and biotransformed olive oil mill wastewater. International Biodeterioration and Biodegradation 38:283-290.
Shackle, V.J., Freeman, C. & Reynolds, B. 2000. Carbon supply and the regulation of enzyme activity in constructed wetlands. Soil Biology and Biochemistry 32:1935-1940.
Singh, R.P. & Agrawal, M. 2008. Potential benefits and risks of land application of sewage sludge. Waste Management 28:347-358.
Soares, R.A., Roesch, L.F.W., Zanatta, G., Camargo F.A. & Passaglia, L.M.P. 2006. Occurrence and distribution of nitrogen fixing bacterial community associated with oat (Avena sativa) assessed by molecular and microbiological techniques. Applied Soil Ecology 33:221-234.
Toberman, H., Laiho, R., Evans, C.D., Artz, R.R.E., Fenner, N., Strakov, P. & Freeman, C. 2010. Long-term drainage for forestry inhibits extracellular phenol oxidase activity in Finnish boreal mire peat. European Journal of Soil Science 61:950-957.
Vieira, R.F., & Silva, C.M. 2003. Soil amendment with sewage sludge and its impact on soil microflora. Brazilian Journal of Microbiology 34(Suppl.1):56-58.
Weaver, M.A., Zablotowicz, R., Larry, K., Martin, L. & Charles, B. 2011. Microbial and vegetative changes associated with development of a constructed wetland. Ecological Indicator. En prensa.
Weil, R.R., Islam, K.R., Stine, M.A., Gruver, J.B. & Samson-Liebig, S.E. 2003. Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use. American Journal of Alternative Agriculture 18:3-17.
Wu, Y., Tam, N.F.Y. & Wong, M.H. 2008. Effects of salinity on treatment of municipal wastewater by constructed mangrove wetland microcosms. Marine Pollution Bulletin 57:727-734.
Yang, Q., Tam, N.F.Y., Wong, Y.S., Luan, T.G., Su, W.S., Lan, C.Y., Shin, P.K.S. & Cheung, S.G. 2008. Potential use of mangroves as constructed wetland for municipal sewage treatment in Futian, Shenzhen, China. Marine Pollution Bulletin 57:735-743.
Zhou, Q.H., Wu, Z.B., Cheng, S.P., He, F. & Fu, G.P. 2005. Enzymatic activities in constructedwetlands and di-n-butyl phthalate (DBP) biodegradation. Soil Biology and Biochemistry 37:1454-1459.

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2023 https://creativecommons.org/licenses/by-nc-nd/4.0