ACTIVIDAD MICROBIANA EN SUELOS Y SEDIMENTOS EN EL SISTEMA CÓRDOBA JUAN AMARILLO, BOGOTÁ D.C.
PDF

Cómo citar

Cerón Rincón, L. E., & Ramírez Valencia, E. (2023). ACTIVIDAD MICROBIANA EN SUELOS Y SEDIMENTOS EN EL SISTEMA CÓRDOBA JUAN AMARILLO, BOGOTÁ D.C. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 35(136), 349–362. https://doi.org/10.18257/raccefyn.35(136).2011.2517

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

Las cuencas hidrográficas en Bogotá D.C. son complejos sistemas ambientales que han sufrido graves alteraciones dadas por la urbanización, la actividad agrícola y ganadera, y actividades industriales. El objetivo de este estudio fue comparar el estado de dos cuencas urbanas en Bogotá D.C. en el sistema Córdoba - Juan Amarillo, a través de algunos indicadores de salud y calidad de suelos, las actividades enzimáticas: deshidrogenasa, fosfatasa alcalina, fosfatasa ácida y o-difenol oxidasa, y las fracciones de carbono activo, para evaluar su condición. Se recomienda el uso de dichas actividades como parámetro de evaluación en programas de manejo ambiental para el sistema.

https://doi.org/10.18257/raccefyn.35(136).2011.2517

Palabras clave

humedales | contaminación | fosfatasa ácida | fosfatasa alcalina | deshidrogenasa | o-difenol oxidasa | carbono activo
PDF

Citas

Acosta-Martínez, V. & Tabatabai, M.A. 2000. Enzyme activities in a limed agricultural soil. Biology and Fertily of Soils 31:85-91.

Benítez, E., Melgar, R. & Nogales, R. 2004. Estimating soil resilience to a toxic organic waste by measuring enzyme activities. Soil Biology and Biochemistry 36:1615-1623.

Blair, G.J., Lefroy, R.D.B. & Lisle, L. 1995. Soil carbon fraction based in their degree of oxidation and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research 46:1459-1466.

Brown, J.S., Sutula, M., Stransky, C., Rudolph, J. & Byron, E. 2010. Sediment Contaminant Chemistry and Toxicity of Freshwater Urban Wetlands in Southern California. Journal of the American Water Resources Association 46:367-385.

Brzeziñska, M., Stêpniewska, Z. & Stêpniewski, W. 2001. Dehydrogenase and Catalase Activity of Soil Irrigated with Municipal Wastewater. Polish Journal of Environmental Studies. 10:307-311.

Beare, M.H., Coleman, D.C., Crossley, D.A., Hendrix, P.F. & Odum, E.P. 1995. A hierarchical approach to evaluating the significance of soil biodiversity to biogeochemical cycling. Plant and Soil 170:5-22.

Burns, R.G. 1982. Enzyme activity in soil: location and a possible role in microbial ecology. Soil Biology and Biochemistry 14: 423-427.

Caldwell, B.A. 2005. Enzyme activities as a component of soil biodiversity: A review. Pedobiologia 49:637-644.

Canet, R., Albiach, R. & Pomares, F. 2000. Indexes of Biological Activity as Tools for Diagnosing Soil Fertility In Organic Farming. In: Garcia C, Hernández T, editores. Research and Perspectives of Soil Enzymology in Spain. Murcia, Spain 7 Cebas-CSIC; p. 27-39.

Capasso, R., Evidente, A., Schivo, L., Orru, G., Marcialis, M.A. & Cristinzio, G. 1995. Antibacterial polyphenols from olive oil mill waste waters. Journal of Applied Bacteriology 79:393-398.

Carreira, J.A., Viñegla, B., García-Ruiz, R., Ochoa, V. & Hinojosa, M.B. 2008. Recovery of biochemical functionality in polluted flood-plain soils: The role of microhabitat differentiation through revegetation and rehabilitation of the river dynamics. Soil Biology and Biochemistry 40:2088-2097.

Caravaca, F., Alguacil, M.M., Torres, P. & Roldán, A. 2005. Plant type mediates rhizospheric microbial activities and soil aggregation in a semiarid Mediterranean salt marsh. Geoderma 124:375-382.

Casida, L.E.Jr., Klein, D.A. & Santoro, T. 1964. Soil Dehydrogenase Activity. Soil Science 98:371-376.

Castaño, M. 2002. Verdades sobre el Humedal de Córdoba. Entre Juncos Boletín de la Red de Humedales de la Sabana de Bogotá. No. 5. p.p 3

Cerón Rincón, L.E. & Melgarejo, L.M. 2005. Enzimas de suelo: indicadores de salud y calidad. Acta Biológica Colombiana. 10:5-17.

Cerón Rincón L.E., & Ramírez, E. 2011. Actividad microbiana en el río Arzobispo. Agronomía Colombiana. (En prensa).

Chen, W., Wu, L., Frankenberger, W.T.Jr. & Chang, A.C. 2008. Soil Enzyme Activities of Long-Term Reclaimed Wastewater-Irrigated Soils. Journal of Environmental Quality 37:S-36-S-42.

DAMA Departamento Administrativo del Medio Ambiente. 2006. Política de Humedales. ©Alcaldía Mayor de Bogotá.

DAMA Departamento Administrativo del Medio Ambiente. 2008. Plan de Manejo del Humedal Córdoba. ©Alcaldía Mayor de Bogotá.

DAMA Departamento Administrativo del Medio Ambiente. 2010. Plan de Manejo del Humedal Juan Amarillo. ©Alcaldía Mayor de Bogotá.

Dick A. & Tabatabai, M.A. 1992. Significance and Potential Use of Soil Enzymes. En: Meeting, FJB (Ed.). Soil Microbial Ecology: Applications in Agriculture and Environmental Management. Marcel Deckker, NY, USA. pp. 95-127.

Doi, R. & Ranamukhaarachchi, S.L. 2009. Soil dehydrogenase in a land degradation-rehabilitation gradient: observations from a savanna site with a wet/dry seasonal cycle. Revista de Biología Tropical 57:223-234.

Doran J.W. 2002. Soil Health and Global Sustainability Translating Science into Practice. Agriculture Ecosystems Environment. 88:119-127.

Doran J.W & Zeiss, M.R. 2000. Soil Health and Sustaninability: Managing the Biotic Component of Soil Quality. Applied Soil Ecology 15:3-11.

Eivazi, F. & Tabatabai, M.A. 1977. Phosphatases in soils. Soil Biology & Biochemistry 9:167-172.

Freeman, C., Ostle, N.J., Fenner, N. & Kang, H. 2004. A regulatory role for phenol oxidase during decomposition in peatlands. Soil Biology and Biochemistry 36:1663-1667.

Gagnon, V., Chazarenc, F., Comeau, Y. & Brisson, J. 2007. Influence of macrophyte species on microbial density and activity in constructed wetlands. Water Science and Technology 56:249-254.

García, C., Hernández, T., Costa, F. 1997. Potencial use of dehydrogenase activity as an index of microbial activity in degraded soils. Communications in Soil Science and Plant Analyses 28:123-134.

Gianfreda, L., Rao, M.A., Piotrowska, A., Palumbob, G. & Colombob, C. 2005. Soil enzyme activities as affected by anthropogenic alterations: intensive agricultural practices and organic pollution. Science of the Total Environment 341:265-279.

Gressel, N. & McColl, J.G. 2003. Phosphorus mineralization and organic matter decomposition: a critical review. Driven by Nature: Plant Litter Quality and Decomposition (eds G.Cadisch & K.E.Giller), CAB International, Wallingford, UK. pp. 297-309.

Güsewell, S. & Freeman, C. 2005. Nutrient limitation and enzyme activities during litter decomposition of nine wetland species in relation to litter N:P ratios. Functional Ecology 19:582-593.

Hernández, M.E. 2010. Suelos de Humedales Como Sumideros De Carbono y Fuentes de Metano. Terra Latinoamericana 28:139-147.

Hill, B.H., Elonen, C.M., Jicha, T.M., Cotter, A.M., Trebitz, A.S. & Danz, N.P. 2006. Sediment microbial enzyme activity as an indicator of nutrient limitation in Great Lakes coastal wetlands. Freshwater Biology 51:1670-1683.

Jezierska-Tys, S. & Fr c, M. 2009. Impact of dairy sewage sludge on enzymatic activity and inorganic nitrogen concentrations in the soils. International Agrophysics 23:31-37.

Kang, H., Lee, S.H., Lee, S.M. & Jung, S. 2009. Positive relationships between phenol oxidase activity and extractable phenolics in estuarine soils. Chemistry and Ecology 25:99-106.

Kang, H & Stanley, E.H. 2005. Effects of levees on soil microbial activity in a large river floodplain. River Research and Applications 21:19-25.

Kang, H. & Freeman, C. 1999. Phosphatase and arylsulphatase activities in wetland soils: annual variation and controlling factors. Soil Biology and Biochemistry 31:449-454.

Kibblewhite, M.G., Ritz, K. & Swift, J. 2008. Soil health in agricultural systems. Philosophical Transactions of the Royal Society B 363:685-701.

Maliszewska-Kordybuch, B. & Smreczek, B. 2003. Habitat function of agricultural soils as affected by heavy metals and polycyclic aromatic hydrocarbons contamination. Environment International 28:719-728.

Monkiedje, A., Spiteller, M., Fotio, D. & Sukul, P. 2006. The effect of land use on soil health indicators in peri-urban agriculture in the humid forest zone of southern Cameroon. Journal of Environmental Quality 35:2402-2409.

Palacio, D., Hurtado, R. & Garavito, L. 2003. Redes Socio-ambientales en tensión: El caso de la gestión ambiental de los humedales de Bogotá. REDES- Revista hispana para el análisis de redes sociales 4:1-31.

Penton, C.R., & Newman, S. 2008. Enzyme-based resource allocated decomposition and landscape heterogeneity in the Florida everglades. Journal of Environmental Quality 37:972-976.

Peruzzi, E. Masciandaro, G., Macci, C., Doni, S., Mora Ravelo, S.G., Peruzzi, P. & Ceccanti, B. 2011. Heavy metal fractionation and organic matter stabilization in sewage sludge treatment wetlands. Ecological Engineering 37:771-778.

Perucci, P., Casucci, C. & Dumontet, S. 2000. An improved method to evaluate the o-diphenol oxidase activity of soil. Soil Biology and Biochemistry 32:387-399.

Ramos-Cormenzana, A., Juarez-Jiménez, B. & Garcia-Pareja, M.P. 1996. Antimicrobial activity of olive mill wastewaters (alpechin) and biotransformed olive oil mill wastewater. International Biodeterioration and Biodegradation 38:283-290.

Shackle, V.J., Freeman, C. & Reynolds, B. 2000. Carbon supply and the regulation of enzyme activity in constructed wetlands. Soil Biology and Biochemistry 32:1935-1940.

Singh, R.P. & Agrawal, M. 2008. Potential benefits and risks of land application of sewage sludge. Waste Management 28:347-358.

Soares, R.A., Roesch, L.F.W., Zanatta, G., Camargo F.A. & Passaglia, L.M.P. 2006. Occurrence and distribution of nitrogen fixing bacterial community associated with oat (Avena sativa) assessed by molecular and microbiological techniques. Applied Soil Ecology 33:221-234.

Toberman, H., Laiho, R., Evans, C.D., Artz, R.R.E., Fenner, N., Strakov, P. & Freeman, C. 2010. Long-term drainage for forestry inhibits extracellular phenol oxidase activity in Finnish boreal mire peat. European Journal of Soil Science 61:950-957.

Vieira, R.F., & Silva, C.M. 2003. Soil amendment with sewage sludge and its impact on soil microflora. Brazilian Journal of Microbiology 34(Suppl.1):56-58.

Weaver, M.A., Zablotowicz, R., Larry, K., Martin, L. & Charles, B. 2011. Microbial and vegetative changes associated with development of a constructed wetland. Ecological Indicator. En prensa.

Weil, R.R., Islam, K.R., Stine, M.A., Gruver, J.B. & Samson-Liebig, S.E. 2003. Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use. American Journal of Alternative Agriculture 18:3-17.

Wu, Y., Tam, N.F.Y. & Wong, M.H. 2008. Effects of salinity on treatment of municipal wastewater by constructed mangrove wetland microcosms. Marine Pollution Bulletin 57:727-734.

Yang, Q., Tam, N.F.Y., Wong, Y.S., Luan, T.G., Su, W.S., Lan, C.Y., Shin, P.K.S. & Cheung, S.G. 2008. Potential use of mangroves as constructed wetland for municipal sewage treatment in Futian, Shenzhen, China. Marine Pollution Bulletin 57:735-743.

Zhou, Q.H., Wu, Z.B., Cheng, S.P., He, F. & Fu, G.P. 2005. Enzymatic activities in constructedwetlands and di-n-butyl phthalate (DBP) biodegradation. Soil Biology and Biochemistry 37:1454-1459.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2023 https://creativecommons.org/licenses/by-nc-nd/4.0