ANISOTROPÍA ESTADÍSTICA, NO GAUSSIANIDAD, Y PERTURBACIONES EN CAMPOS VECTORIALES
PDF

Cómo citar

Valenzuela-Toledo, C. A., & Rodríguez, Y. (2023). ANISOTROPÍA ESTADÍSTICA, NO GAUSSIANIDAD, Y PERTURBACIONES EN CAMPOS VECTORIALES . Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 35(135), 175–188. https://doi.org/10.18257/raccefyn.35(135).2011.2502

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

Se estudian los descriptores estadísticos (nivel de anisotropía estadística y niveles de no gaussianidad) de la perturbación primordial en la curvatura ζ para modelos cosmológicos inflacionarios que incluyen campos escalares y vectoriales, estos últimos propuestos para incluir violaciones de la isotropía estadística. Para estos modelos se encuentra que es posible obtener relaciones de consistencia entre los descriptores estadísticos, los cuales poseen una contraparte observacional y que, por ende, permiten validar o desechar un modelo teórico. Finalmente, se muestra que los resultados obtenidos están de acuerdo con los datos observacionales más recientes. Como un subproducto de este estudio, presentamos en este artículo la definición del verdadero principio cosmológico.

https://doi.org/10.18257/raccefyn.35(135).2011.2502

Palabras clave

cosmología | anisotropía estadística | no gaussianidad | perturbación primordial en la curvatura
PDF

Citas

Abramo L. R. & Pereira T. S., 2010. Testing gaussianity, homogeneity, and isotropy with the cosmic microwave background, Adv. Astron. 2010, 378203.

Ackerman L., Carroll S.M., & Wise M. B., 2007. Imprints of a primordial preferred direction on the microwave background, Phys. Rev. D 75, 083502.

Adler R. J., 1981. The geometry of random fields, John Wiley & Sons, Chichester - UK.

Aihara H. et al., 2011. The eighth data release of the Sloan Digital Sky Survey: First data from SDSS-III, Astrophys. J. Suppl. Ser. 193, 29.

Alabidi L. & Huston L., 2010. An update on single field models of inflation in light of WMAP7, JCAP 1008, 037 (2010).

Alabidi L. & Lidsey J., 2008. Single field inflation after the WMAP five-year data, Phys. Rev. D 78, 103519.

Alabidi L. & Lyth D. H., 2006a. Inflation models after WMAP year three, JCAP 0608, 013.

Alabidi L. & Lyth D. H., 2006b. Inflation models and observation, JCAP 0605, 016.

Armendariz-Picon C., 2007. Creating statistically anisotropic and inhomogeneous perturbations, JCAP 0709, 014.

Armendariz-Picon C. & Pekowsky L., 2009. Bayesian limits on primordial isotropy breaking, Phys. Rev. Lett. 102, 031301.

Bartolo N., Dimastrogiovanni E., Matarrese S., & Riotto A., 2009a. Anisotropic bispectrum of curvature perturbations from primordial non-Abelian vector fields, JCAP 0910, 015.

Bartolo N., Dimastrogiovanni E., Matarrese S. & Riotto A., 2009b. Anisotropic trispectrum of curvature perturbations induced by primordial non-Abelian vector fields, JCAP 0911, 028.

Beltrán Almeida J. P., Rodríguez Y. & Valenzuela-Toledo C. A., 2011. Feynman-like rules for calculating n-point correlators of the primordial curvature perturbation, in preparation.

Bohmer C. G. & Mota D. F., 2008. CMB anisotropies and inflation from non-standard spinors, Phys. Lett. B 663, 168.

Boubekeur L. & Lyth D. H., 2006. Detecting a small perturbation through its non-gaussianity, Phys. Rev. D 73, 021301 (R).

Bunn E. F. & White M. J., 1997. The four-year COBE normalization and large-scale structure, Astrophys. J. 480, 6.

Byrnes C. T., Koyama K., Sasaki M., & Wands D., 2007. Diagrammatic approach to non-gaussianity from inflation, JCAP 0711, 027.

Cogollo H. R. S., Rodríguez Y., & Valenzuela-Toledo C. A., 2008. On the issue of the (series convergence and loop corrections in the generation of observable primordial non-gaussianity in slow-roll inflation. Part I: the bispectrum, JCAP 0808, 029.

Dimastrogiovanni E., Bartolo N., Matarrese S. & Riotto A., 2010. Non-gaussianity and statistical anisotropy from vector field populated inflationary models, Adv. Astron. 2010, 752670.

Dimopoulos K, 2006. Can a vector field be responsible for the curvature perturbation in the Universe?, Phys. Rev. D 74, 083502.

Dimopoulos K, 2007. Supergravity inspired vector curvaton, Phys. Rev. D 76, 063506.

Dimopoulos K & Karciauskas M., 2008. Non-minimally coupled vector curvaton, JHEP 0807, 119.

Dimopoulos K, Karciauskas M., Lyth D. H., & Rodríguez Y., 2009. Statistical anisotropy of the curvature perturbation from vector field perturbations, JCAP 0905, 013.

Dimopoulos K, Karciauskas M., & Wagstaff J. M., 2010a. Vector curvaton with varying kinetic function, Phys. Rev. D 81, 023522. 25

Dimopoulos K, Karciauskas M. & Wagstaff J. M., 2010b. Vector curvaton without instabilities, Phys. Lett. B 683, 298.

Dimopoulos K & Wagstaff J. M, 2011. Particle production of vector fields: scale invariance is attractive, Phys. Rev. D 83, 023523.

Dulaney T. R. & Gresham M. L., 2010. Primordial power spectra from anisotropic inflation, Phys. Rev. D 81, 103532.

Germani C. & Kehagias A., 2009. p-form inflation, JCAP 0903, 028.

Golovnev A., 2010. Linear perturbations in vector inflation and stability issues, Phys. Rev. D 81, 023514.

Golovnev A., Mukhanov V., & Vanchurin V., 2008a. Gravitational waves in vector inflation, JCAP 0811, 018.

Golovnev A., Mukhanov V., & Vanchurin V., 2008b. Vector inflation, JCAP 0806, 009.

Golovnev A. & Vanchurin V., 2009. Cosmological perturbations from vector inflation, Phys. Rev. D 79, 103524.

Groeneboom N. E., Ackerman L., Wehus I. K., & Eriksen H. K., 2010. Bayesian analysis of an anisotropic universe model: systematics and polarization, Astrophys. J. 722, 452.

Groeneboom N. E. & Eriksen H. K, 2009. Bayesian analysis of sparse anisotropic universe models and application to the 5-yr WMAP data, Astrophys. J. 690, 1807.

Gümrükcüoglu A. E., Himmetoglu B., & Peloso M., 2010. Scalar-scalar, scalar-tensor, and tensor-tensor correlators from anisotropic inflation, Phys. Rev. D 81, 063528.

Hansen F. K. et al., 2009. Power asymmetry in cosmic microwave background fluctuations from full sky to sub-degree scales: is the Universe isotropic?, Astrophys. J. 704, 1448.

Hanson D. & Lewis A., 2009. Estimators for CMB statistical anisotropy, Phys. Rev. D 80, 063004.

Hanson D., Lewis A. & Challinor A., 2010. Asymmetric beams and CMB statistical anisotropy, Phys. Rev. D 81, 103003.

Himmetoglu B., 2010. Spectrum of perturbations in anisotropic inflationary Universe with vector hair, JCAP 1003, 023.

Himmetoglu B., Contaldi C. R., & Peloso M., 2009a. Instability of the Ackerman-Carroll-Wise model, and problems with massive vectors during inflation, Phys. Rev. D 79, 063517.

Himmetoglu B., Contaldi C. R., & Peloso M., 2009b. Instability of anisotropic cosmological solutions supported by vector fields, Phys. Rev. Lett. 102, 111301.

Himmetoglu B., Contaldi C. R., & Peloso M., 2009c. Ghost instabilities of cosmological models with vector fields nonminimally coupled to the curvature, Phys. Rev. D 80, 123530.

Hoftuft J. et al., 2009. Increasing evidence for hemispherical power asymmetry in the five-year WMAP data, Astrophys. J. 699, 985.

Kanno S., Kimura M., Soda J., & Yokoyama S., 2008. Anisotropic inflation from vector impurity, JCAP 0808, 034.

Karciauskas M., 2011. The primordial curvature perturbation from vector fields of general non-abelian groups, arXiv:1104.3629 [astro-ph.CO].

Karciauskas M., Dimopoulos K., & Lyth D. H., 2009. Anisotropic non-gaussianity from vector field perturbation, Phys. Rev. D 80, 023509.

Karciauskas M. & Lyth D. H., 2010. On the health of a vector field with (RA^2)/6 coupling to gravity, JCAP 1011, 023.

Karlin S. & Taylor H. M., 1975. A first course on stochastic processes, Academic Press, New York - USA.

Koh S. & Hu B., 2009. Timelike vector field dynamics in the early Universe, arXiv:0901.0429 [hep-th].

Kohri K., Lyth D. H., & Valenzuela-Toledo C. A., 2010. On the generation of a non-gaussian curvature perturbation during preheating, JCAP 1002, 023.

Komatsu E., 2010. Hunting for primordial non-gaussianity in the cosmic microwave background, Class. Quantum Grav. 27, 124010.

Komatsu E. et al., 2011. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. Ser. 192, 18.

Kumar J., Leblond L., & Rajaraman A., 2010. Scale dependent local non-gaussianity from loops, JCAP 1004, 024.

Lyth D. H. & Liddle A. R., 2009. The primordial density perturbation: cosmology, inflation, and the origin of structure, Cambridge University Press, Cambridge - UK.

Lyth D. H., Malik K. A., & Sasaki M., 2005. A general proof of the conservation of the curvature perturbation, JCAP 0505, 004.

Lyth D. H & Rodríguez Y., 2005. Inflationary prediction for primordial non-gaussianity, Phys. Rev. Lett. 95, 121302.

Ma Y.-Z., Efstathiou G. & Challinor A., 2011. Testing a direction-dependent primordial power spectrum with observations of the cosmic microwave background, Phys. Rev. D 83, 083005.

Maleknejad A. & Sheikh-Jabbari M. M., 2011a. Gauge-flation: inflation from non-abelian gauge fields, arXiv:1102.1513 [hep-ph].

Maleknejad A. & Sheikh-Jabbari M. M., 2011b. Non-abelian gauge field inflation, arXiv:1102.1932 [hep-ph].

Mukhanov V., 2005. Physical foundations of cosmology, Cambridge University Press, Cambridge - UK.

Pullen A. R. & Kamionkowski M., 2007. Cosmic microwave background statistics for a direction-dependent primordial power spectrum, Phys. Rev. D 76, 103529.

Rodríguez Y. & Valenzuela-Toledo C. A., 2010. On the issue of the ( series convergence and loop corrections in the generation of observable primordial non-gaussianity in slow-roll inflation. Part II: the trispectrum, Phys. Rev. D 81, 023531.

Sachs R. K. & Wolfe A. M., 1967. Perturbations of a cosmological model and angular variations of the microwave background, Astrophys. J. 147, 73.

Samal P. K., Saha R., Jain P., & Ralston J. P., 2009. Signals of statistical anisotropy in WMAP foreground-cleaned maps, Mon. Not. R. Astron. Soc. 396, 511.

Sasaki M. & Stewart E. D., 1996. A general analytic formula for the spectral index of the density perturbations produced during inflation, Prog. Theor. Phys. 95, 71.

Sasaki M. & Tanaka T., 1998. Superhorizon scale dynamics of multiscalar inflation, Prog. Theor. Phys. 99, 763.

Smidt J. et al., 2010. A measurement of cubic-order primordial non-gaussianity (fNL and TNL) with WMAP 5-year data, arXiv:1001.5026 [astro-ph.CO].

Starobinsky A. A., 1983. Isotropization of arbitrary cosmological expansion given an effective cosmological constant, Pis'ma Zh. Eksp. Teor. Fiz. 37, 55 [JETP Lett. 37, 66].

Starobinsky A. A., 1985. Multicomponent de Sitter (inflationary) stages and the generation of perturbations, Pis'ma Zh. Eksp. Teor. Fiz. 42, 124 [JETP Lett. 42, 152].

Valenzuela-Toledo C. A. & Rodríguez Y., 2010. Non-gaussianity from the trispectrum and vector field perturbations, Phys. Lett. B 685, 120 (2010).

Valenzuela-Toledo C. A., Rodríguez Y., & Lyth D. H., 2009. Non-gaussianity at tree and one-loop levels from vector field perturbations, Phys. Rev. D 80, 103519.

Wald R. M., 1983. Asymptotic behavior of homogeneous cosmological models in the presence of a positive cosmological constant, Phys. Rev. D 28, R2118.

Watanabe M.-a., Kanno S., & Soda J., 2009. Inflationary Universe with anisotropic hair, Phys. Rev. Lett. 102, 191302.

Watanabe M.-a., Kanno S., & Soda J., 2010. The nature of primordial fluctuations from anisotropic inflation, Prog. Theor. Phys. 123, 1041.

Weinberg S., 1972. Gravitation and cosmology: principles and applications of the general theory of relativity, John Wiley & Sons, New York - USA.

Weinberg S., 2008. Cosmology, Oxford University Press, Oxford - UK.

Yokoyama S. & Soda J., 2008. Primordial statistical anisotropy generated at the end of inflation, JCAP 0808, 005.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2023 https://creativecommons.org/licenses/by-nc-nd/4.0