Resumen
Consideremos el siguiente producto interno de tipo Sobolev (p, q) = ∫ p(x)q(x)(1 - x)^α(1 + x)^βdx + i[p'(1)q(1) - p(1)q'(1)], donde p y q son polinomios con coeficientes reales, α, β > -1, P(x) = (p(x), q(x))', y A = [M0, M1; M1, M2] es una matriz positiva semidefinida, donde M0, M1 ≥ 0, y A ∈ ℝ. La familia de los polinomios ortogonales con respecto a (1), P_n^{(α,β)}, se llaman polinomios del tipo Jacobi Sobolev. Una expresión que relaciona esta familia de polinomios con P_n^{(0,0)}, los polinomios ortogonales de Jacobi usuales, se obtuvo en [8]. Aquí obtenemos la asintótica relativa exterior para P_n^{(0,0)}, así como también la correspondiente fórmula de Mehler-Heine.
Palabras clave
Citas
M. Alfaro, F. Marcellán, & M. L. Rezola, "Estimates for Jacobi-Sobolev type orthogonal polynomials," J. Appl. Anal. 67 (1997), 157-174.
M. Alfaro, F. Marcellán, M. L. Rezola, & A. Ronveaux, "On orthogonal polynomials of Sobolev type: Algebraic properties and zeros," SIAM J. Math. Anal. 23 (1992), 737-757.
M. Alfaro, F. Marcellán, M. L. Rezola, and A. Ronveaux, "Sobolev-Type orthogonal polynomials: The nondiagonal case," J. Approx. Theory 83 (1995), 266-287.
M. Alfaro, J. J. Moreno-Balcázar, A. Peña, & M. L. Rezola, "Asymptotics for a generalization of Hermite polynomials," Asymp. Anal. 66 (2010), 113-117.
R. Alvarez & J. J. Moreno-Balcázar, "Asymptotic properties of generalized Laguerre orthogonal polynomials," lndag. Math. (N.S) 15 (2004), 151-165.
G. E. Andrews, R. Askey, & R. Roy, "Special Functions," Encyclopedia of Mathematics and its Applications Vol. 71, Cambridge University Press, Cambridge (1999).
T. S. Chihara, "An Introduction to Orthogonal Polynomials," Gordon and Breach, New York (1978).
H. Dueñas & L. Garza, "Jacobi-Sobolev type orthogonal polynomials: Holonomic equation and electrostatic interpretation. A non-diagonal case," Submitted (2010).
H. Dueñas & F. Marcellán, "The Laguerre-Sobolev-type orthogonal polynomials," J. Approx. Theory 162 (2010), 421-440.
H. Dueñas & F. Marcellán, "Asymptotic behaviour of Laguerre-Sobolev-Type Orthogonal Polynomials. A nondiagonal case," J. Comput. Appl. Math. 235 (2010), 998-1007.
H. Dueñas & F. Marcellán, "The holonomic equation of the Laguerre-Sobolev-type orthogonal polynomials: a non-diagonal case," J. Difference. Equ. Appl. (2009). http://dx.doi.org/10.1080/10236190903456639
R. Koekoek, "Generalizations of Laguerre Polynomials," J. Math. Anal. Appl. 153 (1990), 576-590.
R. Koekoek & H. G. Meijer, "A generalization of Laguerre Polynomials," SIAM J. Math. Anal. 24 (1993), 768-782.
G. López Lagomasino, F. Marcellán & W. Van Assche, "Relative asymptotics for polynomials orthogonal with respect to a discrete Sobolev inner product," Constr. Approx. 11 (1995), 107-137.
F. Marcellán & J. J. Moreno-Balcázar, "Asymptotics and Zeros of Sobolev Orthogonal Polynomials on Unbounded Supports," Acta Appl. Math. 94 (2006), 163-192.
F. Marcellán & J. W. Van Assche, "Relative Asymptotics for Orthogonal Polynomials with a Sobolev Inner Product," J. Approx. Theory 72 (2004), 193-209.
H. G. Meijer, "Zero distribution of orthogonal polynomials in a certain discrete Sobolev space," J. Math. Anal. Appl. 172 (1993), 520-532.
G. Szegő, "Orthogonal Polynomials," 4th ed., Amer. Math. Soc. Colloq. Publ. Series, vol 23, Amer. Math. Soc., Providence, RI, (1975).
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2023 https://creativecommons.org/licenses/by-nc-nd/4.0