IDENTIFICANDO EL INFLATÓN CON EL BOSÓN DE HIGGS DEL MODELO ESTÁNDAR
PDF

Cómo citar

Peralta, C. D., & Rodríguez, Y. (2023). IDENTIFICANDO EL INFLATÓN CON EL BOSÓN DE HIGGS DEL MODELO ESTÁNDAR. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 36(138), 25–36. https://doi.org/10.18257/raccefyn.36(138).2012.2429

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

En este artículo, se estudia la posibilidad de que el bosón de Higgs del Modelo Estándar de Partículas Elementales pueda generar inflación primordial del tipo rodadura lenta, lo que resolvería los problemas clásicos de la cosmología estándar. El requisito crucial para hacer viable esta posibilidad, es que el campo escalar de Higgs presente un tipo particular de acoplamiento no mínimo a la gravedad. Se realiza una transformación conforme desde el marco de Jordan al marco de Einstein encontrándose una modificación al tradicional  potencial de Higgs para valores muy grandes del campo, lo que permite una zona de alta planitud y, por ende, inflación primordial del tipo rodadura lenta. Se comparan los resultados asociados al índice espectral y a la razón tensor a escalar con las cotas observacionales más recientes, encontrándose que la generación de estructuras a gran escala en este escenario es satisfactoria.

https://doi.org/10.18257/raccefyn.36(138).2012.2429

Palabras clave

Inflación | bosón de Higgs | acoplamiento no mínimo a la gravedad
PDF

Citas

Abbiendi G. et. al., 2003. Search for the Standard Model Higgs Boson at LEP, Phys. Lett. B 565, 61.

ALEPH Collaboration et. al., 2010. Precision Electroweak Measurements and Constraints on the Standard Model, arXiv:1012.2367 [hep-ex].

Allahverdi R., Brandenberger R., Cyr-Racine F.-Y., & Mazumdar A., 2010. Reheating in Inflationary Cosmology: Theory and Applications, Ann. Rev. Nucl. Part. Sci. 60, 27.

ATLAS Collaboration, 2012. Combined Search for the Standard Model Higgs Boson Using up to 4.9 fb-1 of pp Collision Data at √s =7 TeV with the ATLAS Detector at the LHC, Phys. Lett. B 710, 49.

Barbinsky A. O., Kamenshchik A. Yu., & Starobinsky A. A., 2008. Inflation Scenario Via the Standard Model Higgs Boson and LHC, JCAP 0811, 021.

Bennett C. L. et. al., 2003. First-Year Wilkinson Microwave Aniso-tropy Probe (WMAP) Observations: Preliminary Maps and Basic Results, Astrophys. J. Suppl. Ser. 148, 1.

Bezrukov F. & Shaposhnikov M., 2008. The Standard Model Higgs Boson as the Inflaton, Phys. Lett. B 659, 703.

Bezrukov F. L., 2008. Non-Minimal Coupling in Inflation and In-flating with the Higgs Boson, arXiv: 0810.3165 [hep-ph].

Bezrukov F. L., Magnin A., & Shaposhnikov M., 2009. Standard Model Higgs Boson Mass from Inflation, Phys. Lett. B 675, 88.

Cervantes-Cota J. L. & Dehnen H., 1995. Induced Gravity Inflation in the Standard Model of Particle Physics, Nucl. Phys. B 442, 391.

CMS Collaboration, 2012. Combined Results of Searches for the Standard Model Higgs Boson in pp Collisions at √s =7 TeV, ar-Xiv:1202.1488 [hepex].

Deffayet C., Deser S., & Esposito-Farese G., 2009. Generalized Galileons: All Scalar Models whose Curved Background Extensions Maintain Second-Order Field Equations and Stress-Tensors, Phys. Rev. D 80, 064015.

Deffayet C., Esposito-Farese G., & Vikman A., 2009. Covarian Galileon, Phys. Rev. D 79, 084003.

Dimopoulos S., Kachru S., McGreevy J., & Wacker J. G., 2008. Nflation, JCAP 0808, 003.

Dodelson S., 2003. Modern Cosmology, Elsevier Academic Press, London -UK.

Elias-Miro J. et. al., 2011. Higgs Mass Implications on the Stability of the Electroweak Vacuum, arXiv:1112.3022 [hep-ph].

Germani C. & Kehagias A., 2010a. New Model of Inflation with Non-Minimal Derivative Coupling of Standard Model Higgs Bosonto Gravity, Phys. Rev. Lett. 105, 011302.

Germani C. & Kehagias A., 2010b. Cosmological Perturbations inthe New Higgs Inflation, JCAP 1005, 019. Erratum-ibid. 1006, E01.

Granda L. N., 2011. Inflation Driven by Scalar Field with Non-Minimal Kinetic Coupling with Higgs and Quadratic Potentials,JCAP 1104, 016.

Granda L. N. & Cardona W., 2010. General Non-Minimal Kinetic-Coupling to Gravity, JCAP 1007, 021.

Grifflths D., 2008. Introduction to Elementary Particles, Wiley-VCH, Weinheim - Germany.

Guth A. & Pi S., 1982. Fluctuations in the New Inflationary Universe, Phys. Rev. Lett. 49, 1110.

Guth A. H., 1981. The Inflationary Universe: A Posible Solution to the Horizon and Flatness Problems, Phys. Rev. D 23, 347.

Harrison E. R., 1970. Fluctuations at the Threshold of Classical Cosmology, Phys. Rev. D 1, 2726.

Kamada K. et. al., 2012. Generalized Higgs Inflation, arXiv:1203.4059 [hep-ph].

Kamada K., Kobayashi T., Yamaguchi M., & Yokoyama J., 2011. Higgs G-Inflation, Phys. Rev. D 83, 083515.

Kane G., 1993. Modern Elementary Particle Physics: The Fundamental Particles and Forces?, Westview Press, Boulder -USA.

Kobayashi T., Yamaguchi M., & Yokoyama J., 2011. Generalized GInflation: Inflation with the Most General Second-Order Field Equations, Prog. Theor. Phys. 126, 511.

Komatsu E. et. al., 2011. Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, Astrophys. J. Suppl. Ser. 192, 18.

Linde A., 1982. A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett. B 108, 389.

Linde A. D., 1983. Chaotic Inflation, Phys. Lett. B 129, 177.

Lyth D. H. & Liddle A. R., 2009. The Primordial Density Perturbation: Cosmology, Inflation and the Origin of Structure, Cambridge University Press, Cambridge - UK. Mukhanov V. F., 2005. Physical Foundations of Cosmology, Cambridge University Press, Cambridge -UK. Nakamura K. et. al., 2010. The 2010 Review of Particle Physics, J. Phys. G 37, 075021.

Nakayama K. & Takahashi F., 2010. Running Kinetic Inflation, JCAP 1011, 009.

Nakayama K. & Takahashi F., 2011. Higgs Chaotic Inflation in Standard Model and NMSSM, JCAP 1102, 010.

Nicolis A., Rattazzi R., & Trincherini E., 2009. The Galileon as a Local Modification of Gravity, Phys. Rev. D 79, 064036.

Penzias A. A. & Wilson R. W., 1965. A Measurement of Excess Antenna Temperature at 4080 Mc/s, Astrophys. J. 142, 419.

Rodríguez Y., 2009. The Origin of the Large-Scale Structure in the-Universe: Theoretical and Statistical Aspects, LAP - Lambert Academic Publishing, Saarbrücken - Germany. Also available as PhD Thesis, Lancaster University, Lancaster - UK, 2005. arXiv:astro-ph/0507701.

Smoot G. F. et. al., 1992. Structure in the COBE Differential Microwave Radiometer First-Year Maps, Astrophys. J. 396, L1.

Spokoiny B.L., 1984. Inflation and Generation of Perturbations in Broken Symmetric Theory of Gravity, Phys. Lett. B 147, 39.

Starobinsky A. A., 1979. Spectrum of Relict Gravitational Radiation and the Early State of the Universe, Pis’ma Zh. Eksp. Teor. Fiz. 30, 719 [JETP Lett. 30, 682].

‘t Hooft G., 1980. Gauge Teories of the Forces Between Elemen-tary Particles, Sci. Am. 242, 90.

Van der Bij J.J., 1994. Can Gravity Make the Higgs Particle Decouple?, Acta Phys. Pol. B 25, 827.

Van der Bij J.J., 1995. Can Gravity Play a Role at the Electroweak Scale?, Int. J. Phys. 1, 63.

Wald R. M., 1984. General Relativity, The University of Chicago Press, Chicago - USA.

Weinberg S., 1972. Gravitation and Cosmology, John Wiley & Sons, New York - USA.

Weinberg S., 2008. Cosmology, Oxford University Press, Oxford -UK.

Zee A., 1979. Broken-Symmetric Theory of Gravity, Phys. Rev. Lett. 42, 417.

Zel’dovich Y. B., 1972. A Hypothesis, Unifyng the Structure and the Entropy of the Universe, Mon. Not. R. Astron. Soc. 160, 1P.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales