Resumen
El presente artículo pretende dar una mirada detallada a los avances y retos asociados al estudio de los movimientos en masa detonados por lluvias, los cuales son característicos y comunes en ambientes tropicales como Colombia. Los movimientos en masa constituyen una de las causas más frecuentes de desastres alrededor del mundo. Las pérdidas económicas asociadas son millonarias y aumentan debido a la expansión urbana sobre áreas montañosas de estabilidad precaria. Los avances más importantes en esta materia alrededor del mundo han sido aplicados en los últimos años en la determinación de umbrales críticos, definidos a partir de modelos físicos o estadísticos, combinados con pronósticos de lluvias y monitoreo en tiempo real como parte integral y fundamental de los sistemas de alerta temprana. Los procesos de remoción en masa tienen múltiples causas, tales como las condiciones geológicas, geomorfológicas y la intervención antrópica; sin embargo, un solo factor como la precipitación, es considerado el estímulo externo que puede generar una respuesta casi inmediata de movilizar los materiales que conforman la vertiente, sea por el rápido incremento de los esfuerzos o por la reducción de la resistencia. La lluvia como factor detonante en la ocurrencia de movimientos en masa ha sido estudiada por numerosos autores, algunos de estos estudios han abordado esta problemática utilizando la estadística, definiendo umbrales críticos que relacionan generalmente la intensidad y la magnitud de la lluvia con la ocurrencia de los movimientos. Igualmente son explorados modelos físicos basados en patrones geotécnicos e hidrológicos que relacionan lluvias, presión de poros y estabilidad de vertientes.
Palabras clave
Citas
Abe, K. 1997. A method of evaluating the effect of trees roots on preventing shallow-seated landslides. Bull. Forest. For. Prod. Res. Inst. No. 1 (373), 1105-1181.
Alcantara-Ayala, I. 2002. Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries. Geomorphology 47. Pág. 107-124.
Aleotti, P. 2004. A warning system for rainfall-induced shallow failures. Engineering Geology 73. Pág. 247-265.
Aleotti P.; Chowdhury R. 1999. Landslide hazard assessment: summary review and new perspectives. Bulletin of Engineering Geology and the Environment. Volume 58, Number 1. Pág. 21-44.
Amaral, P., Marques, R., Queiroz, G., Zezere, J.L., Marques, F. 2009. Distributed transient response modeling of rainfall-triggered shallow landslide for susceptibility assessment in Ribeira Quente valley (S. Miguel Island, Azores). En Landslide Processes: from geomorphologic mapping to dynamic modeling. France. Pág. 89-94.
Anderson S.A., Sitar N. 1995. Analysis of rainfall-induced debris flows. Journal of Geotechnical Engineering. Pág. 544-552.
Aristizábal, E., Gómez, J. 2007. Inventario de emergencias y desastres en el Valle de Aburrá: originados por fenómenos naturales y antrópicos en el periodo 1880-2007. Revista Gestión y Ambiente, Vol. 10 No 2. Pág. 17-30.
Barredo J. I., Benavides A., Hervas H., van Westen C.J. 2000. Comparing heuristic landslide hazard assessment techniques using GIS in the Titajana basin, Gran Canaria Island, Spian. International Journal of Applied Earth Observation and Geoinformation 2, Issue 1, 9-23.
Baum R.L., Savage W.Z., Godt W. 2002. TRIGRS-a fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis. Open file report 02-424 USGS. Berne, A., Uijlenhoet, R., Troch, A. 2005- Similarity analysis of subsurface flow response of hillslopes with complex geometry. Water Resources Research 41. 10-1029/ 2004WR003629.
Beven, K. J. and Kirkby, M. J. 1979. A physically based, variable contributing area model of basin hydrology, Hydrol. Sci. B., 24, 43-69.
Borga, M., Dalla Fontana, G., Daros, D., Marchi, L. 1998. Shallow landslide hazard assessment using a physically based model and digital elevation data. Environmental Geology 35 (2-3). Pág. 81-88.
Borga, M., Gregoretti, C., Marchi, L. 2002a. Assessment of shallow landsliding by using a physically based model of hillslope stability. Hydrological Processes 16, 2833-2851.
Borga, M., Cazorzi F. 2002b. Analysis of topographic and climatic control on rainfall-triggered shallow landsliding using a quasi-dynamic wetness index. Journal of Hydrology 268. Pág. 56-71.
Branb E.W., Premchitt, J., Phillipson, HB. 1984. Relationship between rainfall and lanslides in Hong Kong. Proceed. IV Int. Symp. Landslides, Toronto, v. 1, 377-384.
Brunsden, D. 2002. The fifth Glossop Lecture. Geomorphological roulette for engineers and planners: some insights into a old game. Quart. J. of Engng. Geol. 35, 101-142.
Brunsden, D., Prior, D. 1984. Slope instability. John Wile & Sons. 620 pág.
Burton, A., Bathurst, J.C. 1998. Physically based modeling of shallow landslide sediment yield at a catchment scale. Environmental Geology 35 (2-3). Pág. 89-99.
Caine, N. 1980. The rainfall intensity – duration control of shallow landslides and debris flows. Geografiska Annaler, 62A (1-2). Pág. 23-27.
Campbell, R.H. 1975. Soil slips, debris flows and rainstorms in the Santa Monica Mountains and vicinity, southern Califormia, USGS professional Paper 851. 51 pág.
Cannon, S.H. 2005. A NOAA-USGS Demonstration flash-flood and debris-flow early warning system: U.S. Geological Survey fact Sheet 2005-3104.
Casadei, M., Dietrich, W. E., Millar, N. L. 2003. Testing a model for predicting the timing and location of shallow landslide initiation in soil-mantled landscapes. Earth Surf. Process. Landforms 28. Pág. 925-950.
Chacón, J., Irigaray, C., Fernandez, T., El Hamdouni, R. 2006. Engineering geology maps: landslides and geographical information systems. Bulletin of Engineering Geology and the Environment. Volume 65, Number 1. Pág. 341-411.
Chleborad A.F. 2000. Preliminary method for anticipating the occurrence of precipitation-induced landslides in Seattle, Washington. U.S. Geological Survey Open-file report 00-469.
Chleborad A.F. 2003. Preliminary evaluation of a precipitation threshold for anticipating the occurrence of landslides in the Seattle, Washington, Area. U.S. Geological Survey Open-file report 03-463.
Chia-Cheng Fan, Chih-Feng Su. 2008. Role of roots in the shear strength of root-reinforced soils with high moisture content. Ecological Engineering 33. Pág. 157-166.
Chiang S-H., Chang K-T. 2009. Application of radar data to modeling rainfall-induced landslides. Geomorphology 103. Pág. 299-309.
Cho, S.E. 2009. Infiltration analysis to evaluate the surficial stability of two layered slopes considering rainfall characteristics. Engineering Geology -02910. Doi 10.1016. 12 Pág.
Cho, S.E., Lee S.R. 2001. Instability of unsaturated soil slopes due to infiltration. Computers and Geotechnics 28. Pág. 185-2008.
Cho S.E., Lee S.R. 2002. Evaluation of surficial stability for homogeneous slopes considering rainfall characteristics. Journal of Geotechnical and Geoenviromental Engineering, Vol. 128, No. 9. Pág. 756-763.
Collins B.D., Znidarcic D. 2004. Stability analyses of rainfall induced landslides. Journal of Geotechnical and Geoenvironmental Engineering. Pág. 362-371. Vol. 130, No. 4
Costa, J.E., Baker, V.R. 1981. Surficial Geology. Bulding with the Herat. John Wiley, New York.
Crozier, M. 1999. Prediction of rainfall-triggering landslides: a test of the antecedent water status model. Earth surface processes and landforms 24. Pág. 825-833.
Crosta, G. 1998. Regionalization of rainfall threshold: an aid for landslide susceptibility zonation. Enviromental Geology, 35, (2-3), 131-145.
Crosta, G., dal Negro, P. 2003. Observations and modeling of soil slip-debris flow initiation processes in pyroclastic deposits: the Sarno 1998 event. Natural Hazards and Earth System Sciences 3. Pág. 53-69.
Crosta, G., Frattini, P. 2003. Distributed modeling of shallow landslides triggered by intense rainfall. Natural Hazard and Earth System Sciences 3. Pág. 81-93.
Crosta, G. 2008. Rainfall-induced landslides and debris flows. Hydrological Processes 22, 473-477.
Cruden, D. M., Varnes D. J. 1996. Landslides types and processes In: Landslides investigation and mitigations. Transportation Research Board Special Report 24 (Turner and Schuster Eds), pág. 36-75.
Cruden D. M. 1991. A simple definition of a landslide. Bull Inter Assoc Engng Geol 43, 27-29.
Cruden, D.M.S., Thomson, B.D., Bomhold, J-Y., Locat, J., Evans, J.A., Heginbottom, K., Moran, D.J., Piper, R., Powell, R., Prior, D., Qugley, R.M. 1989. Landslides: extent and economic significance in Canada, en Landslides: extent and economic significance,editado por Brabb E.E: y Harrod B.L., Proc. 28th Intl. Geol. Congr. Symp. On Landslides, Wash. D.C: Pág. 1-23.
Dai, F.C., Lee, C.F. 2001. Frecuency – volume relation and prediction of rainfall-induced landslides. Engineering Geology 59. Pág. 253-266.
D ́Odorico, P., Fagherazzi, S., Rigon, R. 2005. Potential for landsliding: dependence on hyetograph characteristics. Journal of Geophysical Research 110. 10 pág.
¡Claro! Aquí tienes las referencias reescritas:
Ekanayake J.C.; Phillips C.J. 1999. A model for determining thresholds for initiation of shallow landslides under near-saturated conditions in the East Coast region, New Zealand. Journal of Hydrology 38 (1): Pág. 1-28.
Finlay, P., J., Fell, R., Maguire, P., K. 1997. The relationship between the probability of landslide occurrence and rainfall. Can. Geotech. Journal 34. Pág. 811-824.
Fernandes, N.F., Guimaraes, R.F., Gomes, R.A.T., Vieira, B.C., Montgomery, D.R., Greenberg, H. 2004. Catena 55. Pág. 163-181.
Frattini, P., Crosta, G., Fusi, N., Dal Negro, P. 2004. Shallow landslides in pyroclastic soils: a distributed modeling approach for hazard assessment. Engineering Geology 73. Pág. 277-295.
Fredlund, D.G., Morgenstern, N.R. 1977. Stress state variables for unsaturated soils. Journal of the Geotechnical Engineering Division, ASCE 103. Pàg. 447-466.
Fredlund, D.G., Rahardjo, H. 1993. Soil mechanics for unsaturated soils. John Wiley & Sons, Inc., New York.
Gabet, E., Burmank, D., Putkonen, J., Pratt-Sitaula, B., Ojha, T. 2004. Rainfall thresholds for landsliding in the Himalayas of Nepal. Geomorphology 63. Pág. 131-143.
Glade, T., Crozier, M., Smith, P. 2000. Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical Antecedent Daily rainfall model. Pure applied geophysics 157. Pág. 1059-1079.
Giannecchini, R. 2006. Relationship between rainfall and shallow landslides in the southern Apuan Alps (Italy). Natural Hazard Earth System Science 6. Pág. 357-364.
Godt, J.W., Baum, R.L., Chleborad, A.F. 2006. Rainfall characteristics for shallow landsliding in Seattle, Washington, USA. Earth Surface Processes and Landforms 31. Pág. 97-110.
Godt J.W., Baum R.L., Savage W.Z., Salciarini D., Schulz W.H., Harp E.L. 2008. Transient deterministic shallow landslide modeling: requirements for susceptibility and hazard assessments in a GIS framework. Engineering Geology 102. Pág. 214-226.
Gofar, N., Lee, L.M:, Kassim, A. 2008. Response of Suction Distribution to Rainfall Infiltration in Soil Slope. Electronic Journal of Geotechnical Engineering. Vol. 13. Pág. 1-13.
Gostelow, P. 1991. Rainfall and landslides en Prevention and Control of landslides and other mass movements, editado por Almeida-Teixeira, M.; Fantechi, R., Oliveira, R., Gomez Coelho, A. Commis. European Communities, Brucelas. Pág. 139-161.
Gray, D.H. 1995. Influence of vegetation on the stability on the stability of slopes. En Vegetation and slopes stabilization, protection and ecology editado por Barker D.H. London. Pág. 2-23.
Green, W.H., Ampt, G. 1911. Studies of soil physics. Part 1. The flow of air and water through soils, J. Agricultural Soc., 4, 1-24.
Griffiths J.S., Mather A.E., Hart A.B. 2002. Landslide susceptibility in the Rio Aguas catchment SE Spain. Quart J Engng Geol 35, 9-17.
Grifiths J.A., Collison A.J.C. 1999. The validity of using a simplified distributed hydrological model for estimation of landslide probability under a climate change scenario. Proceedings of the 4th International Conference on GeoComputation. http://www.geocomputation.org/1999/index.htm.USA.
GEMMA (Grupo de Estándares para Movimientos en Masa). 2007. Movimientos en masa en la región Andina: Una guía para la evaluación de amenazas. Proyecto Multinacional Andino: Geociencias para las Comunidades Andinas, Servicio Nacional de Geología y Minería Publicación Geológica Multinacional No. 4.
Guimaraes, F.R., Montgomery, D.R., Greenberg, H.M., Fernandes, N.F., Trancoso Gomes, R.A., de Carvalo O.A. 2003. Parameterization of soil properties for a model of topographic control son shallow landsliding: application to Rio de Janeiro. Engineering Geology 69. Pág. 9-108.
Guzzetti, F., Carrara, A., Cardinali, M., Reichenbach, P. 1999. Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31, 181-216.
Guzzetti, F., Peruccacci, S., Rossi, M. 2005. Definition of critical threshold for different scenarios. RISK-Advance Weather Forecast System to Advice on Risk Events and Management. 36 pág. http://palpatine.irpi.cnr.it/Geomorphology/projects1/completed/riskaware/doc/report_wp1_16.pdf/view.
Guzzetti F., Peruccacci S., Rossi M., Colin P.S. 2008. The rainfall intensity-duration control of shallow landslides and debris flows: an update. Landslides 5. Pág. 3-17.
Hammond, C., Hall, D., Miller, S., Swetik, P. 1992. Level I stability Analysis (LISA) documentation for version 2.0 Gen. Tech. Rep. INT-285. For Serv. US Dep of Agric., Utah.
Harp E.L., Reid M.E., McKenna P.J., Michael J.A. 2009. Mapping of hazard from rainfall-triggered landslides in developing countries: examples from Honduras and Micronesia. Engineering Geology, in press.
Hengxing, l., Chenghu, Z., Lee, C.-, F., Wang S., Faquan, W., U. 2003. rainfall-induced landslide stability analysis in response to transient pore pressure- a case study of natural terrain landslide in Hong Kong. Science in China, Vol. 46. Supp. 52-68.
Hennrich, K., Crozier, M. 2004. A hillslope hydrology approach for catchment-scale slope stability analysis. Earth Surface Proccess and Landforms 29. Pág. 599-610.
Huat B.B.K., Ali F.H.J., Low T.H. 2006. Water infiltration characteristics of unsaturated soil slope and its effect on suction and stability. Geotechnical and Geological Engineering 24. Pág. 1293-1306.
Hutchinson, J.N. 1995. Keynote paper, Landslide hazard assessment. Proceeding of the 6th International Symposium on Landslides, Christchurch, New Zealand 3, 1805-1841.
Jaiswal, P., van Westen C.J. 2009. Rainfall.based temporal probability for landslide initiation along transportation routes in Southern India. En Landslide Processes: from geomorphologic mapping to dynamic modeling. France. Pág. 139-143.
Iida, T. 1999. A stochastic hydro-geomorphological model for shallow landsliding due to rainstorm. Catena 34. Pág. 293-313.
Iida, T. 2004. Theoretical research on the relationship between return period of rainfall and shallow landslides. Hydrological Process 18. Pág. 739-756.
Iiritano, G., Versace, P., Sirangelo, B. 1998. Real-time estimation of hazard for landslides triggered by rainfall. Environmental Geology 35 (2-3). Pág. 175-183.
International Early Warning Programme (2005). Dedicated to Reducing Disasters through Effective People-Centred Early Warning Systems, World Conference on Disaster Reduction, Kobe, Hyogo, Japan.
Iverson, R. 2000. Landslide triggering by rain infiltration. Water Resources Research, Vol. 36. No 7. Pág. 1897-1910.
Jakob, M., Weatherly, H. 2003. A hydroclimatic threshold for landslide initiation on the North Shore Mountains of Vancouver, British Columbia. Geomorphology 54. Pág. 137-156.
Lan, H.X.; Lee, C.F., Zhou, C.H., Matin C.D. 2005. Dynamic characteristics analysis of shallow landslides in response to rainfall event using GIS. Environmental Geology 47. Pág. 254-267.
Lanni, C., Rigon, R., Cordano, E., Tarantino, A. 2009. Analysis of the effect pf normal and lateral subsurface water flow on the triggering of shallow landslides with a distributed hydrological model. En Landslide Processes: from geomorphologic mapping to dynamic modeling. France. Pág. 157-162.
Larsen, M., C. 2008. Rainfall-triggered landslides, anthropogenic hazards, and mitigation strategies. Advances in Geosciences, 14, pág. 147-153.
Li A.G., Yue L.G., Tham L.G., Lee C.F., Law K.T. 2005. Field-monitored variations of soil moisture and matric suction in a saprolite slope. Canadian Geotechnical Journal 42. Pág. 13-26.
Matsushi Y., Hattanji T., Matsukura Y. 2006. Mechanisms of shallow landslides on soil-mantled hillslopes with permeable and impermeable bedrocks in the Boso Peninsula, Japan. Geomorphology 76. Pág. 92-108.
Montero Olarte, J. 2005. MOviientso en masa en la región Andina. Memorias III Curso Latinoamericano de Movimientos en Masa. Pág. 13-16.
Montgomery, D. R., Sullivan, K., Greenberg, M. 1998. Regional test of a model for shallow landsliding. Hydrol. Process. 12, pág. 943-955.
Montgomery, D. R., Dietrich, W. E. 1994. A physically based model for the topographic control of shallow landsliding. Water Resource Research 30. Pág. 1153-1171.
Montgomery, D. R., Dietrich, W. E. 2002. Runoff generation in a steep, soil-mantled landscape, Water Resources Research. Vol. 38, pág. 1168.
Moore, I., E. M. O’Loughlin, G. J. Burch. 1988. A contour based topographic model for hydrological and ecological applications, Earth Surf. Processes Landforms, 13(4), 305-320.
Moreno, H., A., Vélez, M., V., Montoya, J., D., Rhenals, R., L. 2006. La lluvia y los deslizamientos de tierra en Antioquia: análisis de su ocurrencia en las escalas interanual, intranual y diaria. Revista Escuela de Ingeniería de Antioquia, No 5. Pág. 59-69.
Morrisey M.M., Wieczorek G.F. Morgan B.A. 2001. A comparative analysis of hazard models for predicting debris flows in Madison County, Virginia. USGS open file report 01-0067.
Mukhlinsin, M., Kosugi, K., Satofuka, Y., Mizuyama, T. 2006. effects of soil porosity on slope stability and debris flow runout at a a weathered granitic hillslope. Vadose Zone Journal 5. Pág. 283-295.
Ng C.W.W., Shi Q. 1998. A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage. Computers and Geotechnics, Vol. 22, No. 1. Pág. 1-28.
Normaniza O., Barakban S.S. 2006. Parameters to predict slope stability – soil water and root profiles. Ecological Engineering 28. Pág. 90-95.
Normaniza O., Faisal H.A. Barakban S.S. 2008. Engineering properties of Leucaena leucocephala for prevention of slope failure. Ecological Engineering 32. Pág. 215-221.
O’Loughlin, E. M. 1986. Prediction of Surface Saturation Zones in Natural Catchments by Topographic Analysis, Water Resour. Res., 22, Pág. 794-804.
ONU (Organización de las Naciones Unidas). 1994. Population, environment and development. En: Proceedings of the United Nations Expert Group Meeting on Population, Environment and Development, 20–24 Enero 1992. New York.
Pack, R.T., Tarboton, D.G., Goodwin, C.N. 1998. The Sinmap approach to Terrain Stability Mapping. Proc. 8th Congress of the International Association of Engineering Geology. Vancouver.
Paniconi C., Troch P.A., van Loon E.E., Arno G., Hilberts J. 2003. Hillslope-storage Boussinesq model for subsurface flow and variable source areas along complex hillslopes: 2. Intercomparison with a three-dimensional Richards equation model. Water Resource Research 39. No. 11, 1317.
Pellenq J., Kalma J., Boulet G. Saulnier G.M., Wooldridge S., Kerr Y. Chehbouni A. 2003. A disaggregation scheme for soil moisture based on topography and soil depth. Journal of Hidrology 276. Pág. 112-127.
Polemio M., Petrucci O. 2000. Rainfall as a Landslide Triggering Factor: An Overview of Recent International Research. Landslides in research, theory and practice. Proceedings of the 8th International Symposium on Landslides, Caraiff. Pág. 1219-1226.
Pradel, D. 1993. Effect of permeability on surficial stability of homogeneous slopes. Journal of Geotechnical Engineering, Vol. 119, No. 2. Pág. 315-332.
Pradel, D., Raad, G.1993. Effect of permeability on surficial stability of homogeneous slopes. Journal of Geotechnical Engineering, Vol. 119, No. 2. Pág. 315-332.
Qiu C., Esaki T., Xie M., Mitani Y., Wang C. 2007. Spatio-tempo-ral estimation of shallow landslide hazard triggered by rainfall using a three-dimensional model. Environmental Geology 52. Pág. 1569-1579.
Quinn P., Beven K., Chevalier P., Planchon O. 1991. The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrological Processes 5. Pág. 59-79.
Rahardjo, H. 2000. Rainfall-induced slope failures. Research Rep. No. NSTB 17/6/16, Nanyang Technological Univ. Singapore.
Rahardjo, H., Leong, E.C., Rezaur, R.B. 2008. Effect of antecedent rainfall on pore-water pressure distribution characteristics in residual soil slopes under tropical rainfall. Hydrological Processes 22. Ág. 506-523.
Rahardjo, H., Li, X. W., Toll, D. G., Leong, E. C. 2001. The effect of antecedent rainfall on slope stability. Geotechnical and Geological Engineering 19. Pág. 371-399.
Rahardjo H., Lim, T. T., Chang, M.F., Fredlund, D.G. 1995. Shear strength characteristics of a residual soil. Canadian Geotechnical Journal, Vol. 32. 60-77.
Rahardjo H., Ong T.H., Rezaur R.B., Leong E.C. 2007. Factors controlling instability of homogeneous soil slopes under rainfall. JOurna of Geotechnical and Geoenvironmental Engineering, Vol. 133, No. 12. Pág. 1532-1543.
Reichenbach, P., Cardinalli, M., De Vita, P., Guzzetti, F. 1998. Regional hydrological thresholds for landslides and floods in the Tiber River Basin (Central Italy). Environmental Geology 35 (2-3) Pág. 146-159.
Reid E.M. 1997. Slope instability caused by small variations in hydraulic conductivity. Journal of Geotechnical and Geoenvironmental Engineering. Pág. 717-725.
Rezzoug A., Schumann A., Chifflard P., Zepp H. 2005. Field measurements of soil moisture dynamics and numerical simulation using the kinematic wave approximation. Advances in Water resources 28. Pág. 917-926.
Rosso, R. R. Rulli, M. C., Vannucchi, G. 2006. A physically based model for the hydrologic control on shallow landsliding. Water Resources Research 42- Pág. 16.
Richards, L. A. 1931. Capillary conduction of liquids in porous mediums, Physics, 1, 318-333, 1931.
Saldarriaga, R. 2003. Inventario y sistematización de los desastres naturales reportados en los municipios del Valle de Aburrá, entre los años 1900 y 2002. Tesis pregrado, Universidad EAFIT, 120 pp, Medellín, Colombia.
Salciarini D., Godt J.W., Savage W.Z., Baum R.L., Conversini P. 2008. Modeling landslide recurrence in Seattle, Washigton, USA. Engineering Geology 102. Pág. 227-237.
Setyo, A., Liao, H-J. 2008. Analysis of rainfall-induced infinite slope failure during typhoon using a hydrological-geotechnical model. Environ. Geol. DOI 10.1007/s00254-008-1215-2.
Sharma, R., H., Nakagawa, H. 2005. Shallow landslide modeling for heavy rainfall events. Annuals of Disas. Prev. Res. Inst. Kyoto Univ. 48.
Scheidegger, A. E. 1998. Tectonic predesign of mass movements, with examples from the Chinese Himalaya. Geomorphology 26, 37-46.
Schuster R. L. 1996. Socieconomic significance of landslides. In: A.K. Turner & R.L. Schuster (Eds.) Landslides Investigation and Mitigation. Transportation Research Board, National Research Council, Special Report 247, National Academy Press, Washington, DC, ISA. 129-177 pp.
Schuster, R.L., Highland, M.L. 2001. Socieconomic and environmental impacts of landslides in the Western Hemisphere. Open file report 01-0276. USGS.
Sidle R.C., Ochiai H. 2006. Landslides: processes, prediction, and land use. Water Resources Monograph 18. American Geophysical Union, Washington D.C.
Soeters, R., Van Westen, C.J. 1996. Slope instability recognition, analysis and zonation. En: A.K. Turner & R.L. Schuster (Eds) Landslides Investigation and Mitigation. Transportation Research Board, National Research Council, Special Report 247, National Academy Press, Washington, D.C., ISA. 129-177 pp.
Starkel L. 1979. The role of extreme meteorological events in the shaping of mountain relief. Geographica Polonica 41. Pág. 13-20.
Suarez D. J. 2008. Árbol de decisiones para la predicción y alera de deslizamientos activados por lluvias. XII Congreso Colombiano de Geotecnia. Bogotá. 6 pp.
Troch P.A., Paniconi C., van Loon E.E. 2003. Hillslope-storage Boussinesq model for subsurface flow and variable source areas along complex hillslopes: 1. Formulation and characteristic response. Water Res Res 39. No. 11, 1316.
Troch P., van Loon E., Hilberts A. 2002. Analytical solutions to a hillslope-storage kinematic wave equation for subsurface flow. Advance Water Resource 25. Pág. 637-649.
Tsaparas, I., Rahardjo, H., Toll, D.G., Leong, E.C. 2002. Controlling parameters for rainfall-induced landslides. Computers and Geotechnics 29. Pág. 1-27.
Tsai, T., Yang, J. 2006. Modelling of rainfall-triggered shallow landslide. Environmental Geology 50- Pág. 525-534.
Talebi, A., Troch, P., A., Uijlenhoet, R. 2008. A steady-state analytical stability model for complex hillslopes. Hydrological Processes Volume 22 Issue 4. pág. 546-553.
Terlien, M. T. J. 1998. The determination of statistical and deterministic hydrological landslide-triggering thresholds. Environmental Geology 35 (2-3). Pág. 124-130.
Terlien, M. T. J. 1997. Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia). Geomorphology 20. Pág. 165-175.
Torres, R., Dietrich, W., Montgomery, D. 1998. Unsaturated zone processes and the hydrologic response of a steep, unchanneled catchment. Water Resources Research 34 (8). Pág. 1865-1879.
Tosi M. 2007. Root tensile strength relationships and their slope stability implications of three shrub species in the Northern Apennines (Italy). Geomorphology 87. Pág. 268-283.
UNFP (United Nation Population Fund). 2007. Estado de la Po- blación Mundial 2007: liberar el potencial del crecimiento ur- bano. Informe de la UNPF, Pag. 108.
Van Beek L.P.H., van Asch TH.W.J. 2004. Regional assessment of the effects of land-use change on landslide hazard by means of physically based modeling. Natural Hazards 31: pág. 289-304.
Van Westen, C.J., van Duren, I., Kruse, H.M.G., Terlien, M.T.J. 1994. GISSIZ: training package for Geographic Information System in slope instability zonation. ITC Publication, No. 5 Vol. 1, Pág. 359.
Van Westen C.J., van Asch T.W.J., Soeters R. 2006. Landslide hazard and risk zonation – why is it still so difficult?. Bull Eng Geol Env 65. Pág 167-184.
Varnes, D. J. 1984. Landslide hazard zonation: a review of principles and practice. Natural Hazards, 3, UNESCO Press. Paris, 64 pp.
Varnes, D. J. 1978. Slope movement types and processes, en Landslide Analysis and Control, editada por Clark M. Special Report 176. Trans. Res. Board, National Academy of Science, National Res. Council, Washigton, D.C. Pág. 11-33.
Varnes, D. J. 1981. Slope stability problems of Circum-Pacific Region as related to mineral and energy rsources, Am. Assoc. Pet. Geol. Studies Geol., 12. Pág. 489-505.
Vélez, J., I., Villarraga, M., R., Álvarez, O., D., Alarcón, J., E., Quintero, F. 2004. Modelo distribuido para determinar la amenaza de deslizamiento superficial por efecto de tormentas intensas y sismos. XXI Congreso latinoamericano de hidráulica, Sao Pedro, Brasil.
Wang, F., Shibata, H. 2007. Influence of sol permeability on rainfall-induced flowslides in laboratory flume tests. Can. Geotech. Journal 44. Pág. 1128-1136.
Wang, G., Sassa, K. 2003. Pore pressure generation and movement of rainfall-induced landslides: effects of grain size and fine particle content. Engineering Geology Vol. 69, Pág. 109-125.
Wieczorek, G.F. Morgan B.A., Campbell, R.H. 2000. Debris-flow hazards in the Blue Ridge of Central Virginia, Environ. Eng. Geosci., 6 (1). Pág. 3-23.
Wilson, R. C., Wieczorek G. F. 1995. Rainfall thresholds for the initiation of debris flows at La Honda, California. Environmental and Engineering Geoscience; v. 1; No. 1; pág. 11-27.
Wu, W., Sidle, R. C. 1995. A distributed slope stability model for steep forested basins. Water resources Research, vol. 31, no. 8. Pág. 2097-2110.
Xie M., Esaki T., Cai M. 2004. A time-space based approach for mapping rainfall-induced shallow landslide hazard. Environmental Geology 46. Pág. 840-850.
Ziemer, R.R. 1981. Roots and the stability of forested slope. En Proceeding of the International Symposium on Erosion and sediment Transport in Pacific Rim Steeplands, International Associacion of Hydrological Sciences Vol. 132, Pág. 343-361.
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2023 https://creativecommons.org/licenses/by-nc-nd/4.0