Resumen
Se evaluó la amenaza por tsunami en el municipio de Buenaventura considerando diferentes escenarios de marea, magnitud y epicentro del sismo precursor. Los resultados indican que la variación de la magnitud del sismo precursor (Mw) genera cambios significativos en las áreas afectadas por inundación, y en la altura y tiempo de llegada del tren de olas. Un sismo de Mw= 8.6 produce un tsunami con alturas de ola superiores a 3.0 m., independientemente de la localización del sismo precursor. El tiempo de llegada del tsunami varía entre 56 y 92 minutos. Sin embargo, también se encontró que la configuración de la línea de costa y la morfometría de la bahía de Buenaventura reducen en un ~40% la altura del oleaje generado por un tsunami.
Palabras clave
Citas
Beck, S., Ruff, L., 1984. The ruptura process of the great 1979 Colombia earthquake: evidence for the asperity model. Journal of Geophysical Research. 89, 9281-9291.
Caballero, L., Ortíz, M., 2002. Evaluación del impacto de tsunamis en el litoral Pacífico colombiano. Parte II (región de Buenaventura). Boletín Científico CCCP. 9, 37-46.
Caicedo, J., Martinelli, B., Meyer, H., Reyna, J., 1996. Numeric simulations of tsunami propagation in the Colombian Pacific coast. Seismological Observatory of the Southwest, OSSO. Cali.
Caicedo, J., Martinelli, B., Meyer, H., Steer, R., 1997. Efecto de tsunami del mar Caribe en la costa colombiana. Observatorio Sismológico del Suroccidente. Cali.
Cardona, Y., 2004 Análisis del arribo de ondas de tsunami a las poblaciones de la bahía de Tumaco a través de señales sintéticas. Boletín Científico del CCCP. 11, 73-85.
Cardona, Y., 2005. Modelación de tsunamis en la costa Pacífica colombiana, caso de aplicación bahía de Tumaco. Tesis de maestría en Ingeniería – Recursos hidráulicos. Universidad Nacional de Colombia.
Cevdet, A., Alpar, B., Altýnok, Y., Özbay, I., Imamura, F., 2002. Tsunamis in the Sea of Marmara: Historical documents for the past, models for the future. Marine Geology. 190, 445-463.
Collot, J-Y., Marcaillou, B., Sage, F., Michaud, F., Agudelo, W., Charvis, P., Graindorge, D., Gutscher, M., Spence, G., 2004. Are rupture zone limits of great subduction earthquakes controlled by upper plate structures? Evidence from multichannel seismic reflection data acquired across the northern Ecuador-southwest Colombia margin. Journal of Geophysical Research. 109, B1103.
Fernández, M., Ortíz, M., Mora, R., 2004. Tsunami Hazards in El Salvador. Geological Society of America. Special Paper. 375, 435-444.
Fernández, M., Molina, E., Havskov, J., Atakan, K., 2000. Tsunamis and tsunami hazards in Central América. Natural Hazards. 22, 91-116.
Goto, C., Ogawa, Y., 1997. Numerical method of tsunami simulation with the leap-frog scheme. IUGG/IOC TIME Project. Unesco. 28 p.
Goto, C., Ogawa, Shuto, N., Imamura, F., 1997. IUGG/IOC TIME Project: Numerical Method of Tsunami Simulation with the Leap-Frog Sheme, Intergovernmental Oceanographic Comisision of UNESCO, Manuals and Guide No. 35, París, Francia, pp. 38.
Gusiakov, V., K., 2001. Basics Pacific tsunamis catalog and database, 47 BC-2000 AD: results of the first stage of the project. Proceedings of the International Tsunami Symposium, August 7-9, 2001, Seattle, USA, PMEL/NOAA, pp 263-272.
Gusiakov, V., K., 2005. Tsunami generation potential of different tsunamigenic regions in the Pacific. Marine Geology. 215, 3-9.
Gutscher, M-A., Malavieille, J., Lallemand, S., Collot, J., 1999. Tectonic segmentation of the North Andean margin: impact of the Carnegie Ridge collision. Earth and Planetary Science Letters. 168, 255-270.
Harvard University, 2005. Harvard Seismology-Harvard CMT Catalog. http://www.seismology.harvard.edu
Hébert, H., Schindelé, F., Altinok, Y., Alpar, B., Gazioglu, C., 2005. Tsunami hazard in the Marmara Sea (Turkey): a numerical approach to discuss active faulting and impact on the Istanbul coastal areas. Marine Geology. 215, 23-43.
IUGG/IOC, 1997. IUGG/IOC Time Project IOC Manuals and Guides No. 35. Numerical method of Tsunami Simulation with the Leap-Frog Scheme. París, Unesco. 101 p.
Mansinha, L., Smylie, D., 1971. The displacement fields of inclined faults. Bulletin of the Seismological Society of America. 61, 1433-1440.
McSaveney, M., Goff, J., Darby, D., Goldsmith, P., Barnett, A., Elliott, S., Nongkas, M., 2000. The 17 July tsunami: Papua New Guinea: evidence and initial interpretation. Marine Geology. 170, 81-92.
Mendoza, C., Dewey, J., 1984. Seismicity associated with the great Colombia-Ecuador earthquakes of 1942, 1958, and 1979: implications for barrier models of earthquake rupture. Bulletin of the seismological society of America. 74, 577-593.
Meyer, H., Caicedo, H., 1998. Evaluation of tsunami source scenarios in the Caribbean sea and simulation of wave heights – a TIME project activity. Okushiri Tsunami/UJNR Workshop 1998.
Papazachos, B., Koutitas, Ch., Hatzidimitriou, P., Karacostas, B., Papaioannou, Ch., 1985. Source and short-distance propagation of the July 9, 1956 southern Aegean tsunami. Marine Geology. 65, 343-351.
Quiceno, A., 2000. Proyecto evaluación del impacto de un tsunami sobre la zona costera de Tumaco por medio de la modelación matemática. Reporte técnico. Centro Control de Contaminación del Pacífico. Tumaco.
Quiceno, A., Ortiz, M., 2001. Evaluación del impacto de un tsunami en el litoral Pacífico colombiano (región de Tumaco). Boletín Científico CCCP. 8, 5-14.
Ramírez, J., Goberna, J., 1980. Terremotos colombianos: noviembre 23 y diciembre 12 de 1979 – Informe preliminar. Reporte Técnico. Instituto Geofísico de la Universidad Javeriana. Bogotá. 95 p.
Rosales, C., Meyer, H., 2007. Tsunami Scenarios for Buenaventura, Colombia. Sixth International Tsunami Workshop: new insights in
tsunami research and tsunami preparedness, warning and mitigation.INOCAR-IUGG/TC-UNESCO IOC-ICG/PTWS. Guayaquil, Ecuador. September 14 – 15th. 2007.
Smith, W., Sandwell, D., 1997. Global seafloor topography from satellite altimetry and ship depth soundings. Science. 277, 1956-1962.
Steketee, J., 1958. Some geophysical applications of the elasticity theory of dislocation. Con. J. Phys. 95, 1165.
Tappin, D., Watts, P., McMurtry, G., Lafoy Y., Matsumoto, T., 2001. The Sissano, Papua New Guinea tsunami of July 1998 — offshore evidence on the source mechanism. Marine Geology, 175, 1-23.
Tinti, S., 1991. Assessment of tsunami hazard in the Italian seas. Sci. Tsunami Hazards. 9, 5-14.
Tinti, S., Gavagni, I., 1995. A smoothing algorithm to enhance finite-element tsunami modelling: an application to 5 February 1783 Calabrian case, Italy. Natural Hazards. 12, 161-197.
Tinti, S., Armigliato, A., 2003. The use of scenarios to evaluate the tsunami impact in southern Italy. Marine Geology, 199, 221-243.
Tinti, S., Armigliato, A., Pagnoni, G., 2002. Tsunami hazard related to the occurrence of large earthquakes along the coasts of Calabria and Sicilia (southern Italy). Abstracts European Seismological Commission (ESC) XXVIII General Assembly, Genoa, 1-6 September 2000, p. 87.
Tinti, S., Maramai, A., Favali, P., 1995. The Gargajo promontory an important seismogenic-tsunamigenic area. Marine Geolgy. 122. 227-241.
Titov, V., Synolakis, C., 1996. Numerical modeling of tidal wave runup. Journal of waterway, port, coastal and ocean engineering. 124 (4) 157-171.
United States Geological Service, 2005. USGS Earthquake Hazards Program: NEIC. http://eqint.cr.usgs.gov/neic
Wells, D., Coppersmith, K., 1994. New empirical relationships among magnitude, ruptura length, ruptura width, ruptura area and surface displacements. Bull. Seism. Soc. Am. 84, 974-1002.
Yalçiner, A.C., Alpar, B., Altinok, Y., Özbay, I., Imamura, F., 2002. Tsunamis in the Sea of Marmara: historical documents for the past, models for the future. Marine Geology. 190, 445-463.
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2023 https://creativecommons.org/licenses/by-nc-nd/4.0