SOBRE EL COMPORTAMIEN DEL SISTEMA CA-S04-H2O
PDF

Cómo citar

Berdugo, I., Romero, E., Saaltink, M., & Albis, M. (2023). SOBRE EL COMPORTAMIEN DEL SISTEMA CA-S04-H2O. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 32(125), 545–558. https://doi.org/10.18257/raccefyn.32(125).2008.2340

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a

Métricas Alternativas


Dimensions

Resumen

Se revisan y discuten la termotropía, barotropía e higroscopía del sistema Ca-SO4-H2O y se deriva una representación tridimensional del diagrama de fases del sistema a presión atmosférica. Se concluye que el comportamiento del sistema es un fenómeno termo-hidro-químico acoplado en el cual la actividad del agua es el factor determinante para la existencia de altas concentraciones de Ca2+ y SO2-4  y la presión de confinamiento juega un papel secundario.

https://doi.org/10.18257/raccefyn.32(125).2008.2340

Palabras clave

anhidrita | yeso | agua | solubilidad | temperatura | presión | vapor | humedad relativa
PDF

Citas

Archer, D.G. 1992. Thermodynamic properties of the NaCl-H2O system II. J. Physical and Chemical Reference Data 21, Issue 4: 793-829.

Berdugo, I.R. 2007. Tunnelling in sulphate-bearing rocks – expansive phenomena. Dr. Thesis, Universitat Politècnica de Catalunya.

Block, J & Waters, O.B. 1968. The CaSO4- Na2SO4-NaCl-H2O system at 25o to 100oC. J. Chem. Eng. Data 13: 336-344.

Blount C.W. & Dickson F.W. 1969. The solubility of anhydrite CaSO4 in NaCl-H2O from 100 to 450°C and 1 to 1000 bars. Geochim. Cosmochim. Acta 33: 227-245.

Blount C.W. & Dickson F.W. 1973. Gypsum anhydrite equilibria in systems CaSO4 and CaCO3-NaCl-H2O. The American Minerologist, 58: 323-331.

Bock, E. 1961. On the solubility of anhydrous calcium sulfate and of gypsum in concentrated solutions of sodium chloride at 25ºC, 30ºC, 40ºC and 50ºC. Can. J. Chem. 39: 1746-1751.

Coussy, O. 2006. Deformation and stress from in-pore drying induced crystallization of salt. Journal of the Mechanics and Physics of Solids, v 54, n 8: 1517-1547.

D’Ans, J. 1933. Die Lösungsgleichgewichte der System der Salz ozeanischer Salzablagerungen. Berlin: 118-123.

D’Ans, J., Bredtscheider, D., Eick, H. & Freund, H.E. 1955. Untersuchungen über die Calciumsulfate. Kali Steinsalz, 9:17-38.

D’Ans, J. 1968. Der Ubergangspunkt Gips – Anhdydrite. Kali U. Steinsalz, 5: 109-111.

Delage, P., Howat, M.D. & Cui, Y.J. 1998. The relationship between suction and swelling properties in a heavily compacted unsaturated clay. Engineering Geology 50: 31-48.

Freyer, D. 2000. Zur Phasenbildung und -stabilität im System Na2SO4–CaSO4–H2O. Dissertation, TU Bergakademie Freiberg.

Freyer, D. & Voigt, W. 2003. Crystallization and Phase Stability of CaSO4 and CaSO4 – Based Salts. Monatshefte für Chemie 134: 693-719.

Freyer, D. & Voigt, W. 2004. The measurement of sulfate mineral solubilities in the Na-K-Ca-Cl-SO4-H2O system at temperatures of 100, 150 and 200°C. Geochimica et Cosmochimica Acta, Vol. 68, No. 2: 307-318.

Hardie, L.A. 1967. The gypsum-anhydrite equilibrium at one atmosphere. Amer. Mineral. 52: 171-200.

Harvie, C.E. & Weare, J.H. 1980. The prediction of mineral solubilities in natural waters: Na-K-Mg-Ca-Cl-SO4-H2O system from zero to high concentration at 25ºC. Geochim. Cosmochim. Acta 44: 981-997.

Hill, A. 1937 . The transition temperature of gypsum to anhydrite. J. Am. Chem. Soc. 59 11): 2242-2244.

Innorta, G., Rabbi, E. & Tomadin, L. 1980 . The gypsum-anhydrite equilibrium by solubility measurements. Geochim. Cosmochim. Acta 44: 1931-1936.

Kelly, K.K., Southard, J.C. & Anderson, C.T. 1941. Thermodynamic properties of gypsum and its dehydration products. U.S. Bur. Mines, Tech. Papers. 625.

Knacke O, Gans W. 1977. The thermodynamics of the system CaSO4–H2O. Z. Phys. Chem. 104: 41-48.

Kontrec, J., Kralj, D. & Brecevic, L. 2002. Transformation of anhydrous calcium sulphate into calcium sulphate dihydrate in aqueous solutions. Journal of Crystal Growth, 240, n 1-2: 203-211.

Lide, D.R. & Frederikse, H.P.R. 1997. CRC Handbook of chemistry and physics. A ready reference book of chemical and physical data. CRC Press, New York.

Manikhin, V.I. & Kryukou, P.A. 1968. Effect of pressure on the solubility of sodium and calcium sulfates. Porovye Rastvory Metody lkh. Izuch., 133-44.

Marsal, D. 1952 Der Einfluss des Druckes auf das System CaSO4-H2O. Heidelberger Beit. Mineral Petrol 3: 289-296.

Marshall, W.L. & Slusher R. 1966 . Thermodynamics of calcium sulphate dihydrate in aqueous sodium chloride solutions, 0-110ºC. J. Phys. Chem. 70: 4015-4027.

McDonald, G.J.F. 1953. Anhydrite-gypsum equilibrium relations. American Journal of Science, vol. 251: 884-898.

Monnin, C. 1990. The influence of pressure on the activity coefficients of the solutes and on the solubility of minerals in the system Na-Ca-Cl-SO4-H2O to 200°C and 1 kbar and to high NaCl concentration. Geochimica et Cosmochimica Acta, Volume 54, Issue 12: 3265-3282.

Møller N. 1988. The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-K-Ca-Cl-SO4-H2O system, to high temperature and concentration. Geochim. Cosmochim. Acta 52: 821-837.

Pitzer, K.S., Peiper, J. C., & Busey, R.H. 1984. Thermodynamic properties of aqueous sodium chloride solutions. J. Phys. Chem. Ref. Data 13: 1-102.

Posnjak E. 1938. The system CaSO4-H2O. Am. Jour. Sci., 5th ser., 35A: 247-272.

Posnjak E. 1940. Deposition of calcium sulfate from sea water. Am. J. Sci. 238: 559-568.

Power, W.H. & Fabuss, B.M. 1964. Thermodynamic properties of saline water. Office of Saline Water Research and Development Progress Rept. 104.

Power, W.H. & Satterfield, C.N. 1966. Transient solute concentrations and phase changes of calcium sulfate in aqueous sodium chloride. J. Chem. Eng. Data 11: 149-154.

Raju, K. & Atkinson, G. 1990. Thermodynamics of ‘scale’ mineral solubilities. 3. Calcium sulfate in aqueous NaCl. Journal of Chemical and Engineering Data, v 35, n 3: 361-367.

Romero, E. 2001. Controlled-suction techniques. 4º Simpósio Brasileiro de Solos Nâo Saturados. W.Y.Y. Gehling & F. Schnaid (eds.):535-542.

Sattler, H. & Brückner, H. 2001. Volumen- und Dichteänderungen bei der Hydratation von Gipsbindemitteln in Abhängigkeit vom Wasserangebot. Zement, Kalk, Gips international, Vol. 54 No. 9: 522-529.

Schneider, A. 1960. Neue dagramme zur bestimmung der relativen luftfeuchtigkeit uber gesattigten wasserigen salzslosungen und wasserigen schwefelsaurelosingen beiverschiedenen tempera-turen. Holz als Rohund Werkstoff 18: 269-272.

Sparrow, B. 2003. Empirical equations for the thermodynamic properties of aqueous sodium chloride. Desalination 159: 161-170.

Tang, A.M. & Cui, Y.J. 2005. Controlling suction by the vapour equilibrium technique at different temperatures and its application in determining the water retention properties of MX80 clay. Can. Geotech. J. 42: 287-296.

Toriumi, T. & Hara, R. 1938. On the calcium sulfate in sea water II. Solubilities of calcium sulphate hemihydrate in sea water of various concentrations at 65o-1 50o. Technol. Rep. Tohoku Imp. Univ. 12: 560-571.

Vanko, D.A. & Bach, W. 2005. Heating and freezing experiments on aqueous fluid inclusions in anhydrite: recognition and effects of stretching and the low-temperature formation of gypsum. Chemical Geology 223: 35-45.

van’t Hoff, J.H., Armstrong, E.F., Hinrichsen, W., Weigert, F. & Just, G. 1903. Gips und Anhydrit. Z. phys. Chem. 45: 257-306.

Zen, E.-AN. 1965. Solubility measurements in the system CaSO4-NaCl-H2O at 35ºC, 50ºC and 70ºC and one atmosphere pressure. J. Petrol. 6: 124-164.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales