Resumen
Muestro en este artículo que es posible obtener valores altos, incluso observables, para el nivel de no gausianidad f N L en un particular modelo inflacionario del tipo slow-roll con un potencial escalar cuadrático de dos componentes y términos cinéticos canónicos. Lo anterior se hace teniendo en cuenta correcciones de lazo tanto en el espectro Pζ como en el biespectro Bζ de la perturbación primordial en la curvatura ζ. Se obtienen valores grandes para f N L incluso si ζ es generada durante inflación. Se tienen en cuenta cinco restricciones que reducen la ventana de parámetros disponible: 1. debemos estar seguros de estar trabajando en un régimen perturbativo de tal manera que la expansión en serie de ζ y su truncamiento, sean válidas. 2. debemos aplicar la condición correcta acerca del (posible) dominio de las correcciones de lazo en Bζ y/o Pζ. 3. debemos satisfacer la condición de normalización del espectro 4. debemos satisfacer el índice espectral observado. 5. debemos asegurar el monto mínimo de inflación para resolver el problema de horizonte.
Palabras clave
Citas
Boubekeur L. & Lyth D.H., 2006. Detecting a small perturbation through its non-gaussianity. Phys. Rev. D 73, 021301 (R).
Bunn E.F. & White M.J., 1997. The four-year COBE normalization and large-scale structure. Astrophys. J. 480, 6.
Byrnes C.T., Choi K.-Y., & Hall L.M.H., 2008. Conditions for large non-gaussianity in two-field slow-roll inflation. JCAP 0810, 008.
Byrnes C.T., Koyama K., Sasaki M., & Wands D., 2007. Diagrammatic approach to non-gaussianity from inflation. JCAP 0711, 027.
Byrnes C.T., Sasaki M., & Wands D., 2006. The primordial trispectrum from inflation. Phys. Rev. D 74, 123519.
Carroll S.M., Tseng C.-Y., & Wise M.B., 2008. Translational invariance and the anisotropy of the cosmic microwave background. arXiv:0811.1086 [astro-ph).
Cogollo H.R.S., Rodríguez Y., & Valenzuela-Toledo C.A., 2008a. On the issue of the ( series convergence and loop corrections in the generation of observable primordial non-Gaussianity in slow-roll inflation. Part I: the bispectrum. JCAP 0808, 029.
Cogollo H.R.S., Rodríguez Y., & Valenzuela-Toledo C.A., 2008b. On the issue of the ( series convergence and loop corrections in the generation of observable primordial non-Gaussianity in slowroll inflation. Part II: the trispectrum. arXiv: 0811. 4092 [astro-ph).
Cogollo H.R.S., Rodríguez Y., & Valenzuela-Toledo C.A., 2008c. Non-gaussianity and loop corrections in a quadratic two-field slowroll model of inflation. Pan II. Submitted to Rev. Acad. Colomb. Cienc.
Cooray A., 2006. 21-cm background anisotropies can discern primordial non-gaussianity. Phys. Rev. Lett. 97, 261301.
Cooray A., Li C., & Melchiorri A., 2008. The t1ispectrum of 21-cm background anisotropies as a probe of primordial nongaussianity. Phys. Rev. D 77, 103506.
Dimopoulos K. & Lazarides G., 2006. Modular inflation and the orthogonal axion as curvaton. Phys. Rev. D 73, 023525.
Dimopoulos K., Lyth D.H., & Rodríguez Y., 2008. Statistical anisotropy of the curvature perturbation from vector field perturbations. arXiv: 0809.1055 [astro-ph).
Dodelson S., 2003. Modem cosmology, Academic Press, San Diego USA.
Dodelson S., Kinney W.H., & Kolb E.W., 1997. Cosmic microwave background measurements can discriminate among inflation models. Phys. Rev. D 56, 3207.
Enqvist K. & Viiihki:inen A., 2004. Non-gaussian perturbations in hybrid inflation. JCAP 0409, 006.
Freese K., Frieman J., & Olinto A., 1990. Natural inflation with pseudo-Nambu-Goldstone bosons. Phys. Rev. Lett. 65, 3233.
Friedman B.C., Cooray A., & Melchiorri A., 2006. WMAPnormalized inflationary model predictíons and the search for primordial gravitational waves with direct detection experiments. Phys. Rev. D 74, 123509.
Kogo N. & Komatsu E., 2006. Angular trispectrum of CMB temperature anisotropy from primordial non-gaussianity with the full radiation transfer function. Phys. Rev. D 73, 083007.
Komatsu E., 2008. Prívate communication.
Komatsu E. & Spergel D.N., 2001. Acoustíc signatures in the primary microwave background bispectrum. Phys. Rev. D 63, 063002. Komatsu E. et. al., 2008. Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretatioQarXiv:0803.0547 [astro-ph].
Liddle A.R. & Lyth D.H., 2000. Cosmological inflation and largescale structure, Cambridge University Press, Cambridge UK.
Linde A.D., 1982. A new inflationary universe scenario: a possible solution to the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 108, 389.
Linde A.O., 1994. Hybrid inflation. Phys. Rev. D 49, 748.
Lyth D.H., 2007. The curvature perturbation in a box. JCAP 0712, 016.
Lyth D.H., 2008. Particle physics models of inflation. Lec. Notes Phys. 738, 81.
Lyth D.H., Malik K.A., & Sasaki M., 2005. A general proof of the conservation of the curvature perturbation. JCAP 0505, 004.
Lyth D.H. & Riotto A., 1999. Particle physics models of inflation and the cosmological density perturbation. Phys. Rep. 314, 1.
Lyth D.H. & Rodríguez Y., 2005a. Inflationary prediction for primordial non-gaussianity. Phys. Rev. Lett. 95, 121302.
Lyth D.H. & Rodríguez Y., 2005b. Non-gaussianity from the second-order cosmological perturbation. Phys. Rev. D 71, 123508. Maldacena J., 2003. Non-gaussian features of primordial fluctuations in single field inflationary models. JHEP 0305, O 13.
Mukhanov V.F., 2005. Physical foundations of cosmology, Cambridge University Press, Cambridge UK.
Okamoto T. & Hu W., 2002. Angular trispectra of CMB temperature and polarization. Phys. Rev. D 66, 063008.
The PLANCK Collaboration, 2006. The scientific programme of Planck. arXiv:astro-ph/0604069.
Rigopoulos G., Shellard E.P.S., & van Tent B.J.W., 2007. Quantitative bispectra from multifield ínflation. Phys. Rev. D 76, 083512.
Sasaki M. & Stewart E.D., 1996. A general analytic formula for the spectral index of the density perturbations produced during inflation. Prog. Theor. Phys. 95, 71.
Seery D. & Lidsey J.E., 2007. Non-gaussianity from the inflationary trispectrum. JCAP 0701, 008.
Seery D., Sloth M., & Vernizzi F., 2008. Inflationary trispectrum from graviton exchange. ar Xi v: 0811. 3 93 4 [ astro-ph]. Starobinsky A.A., 1985.
Multicomponent de Sitter (inflationary) stages and the generation of perturbations. Pisma Zh. Eksp. Teor. Fiz. 42, 124. [JETP Lett. 42, 152]. Viiihki:inen A., 2005. Comment on non-gaussianity in hybrid inflation. arXiv:astro-ph/0506304.
Vernizzi F. & Wands D., 2006. Non-gaussianities in two-field inflation. JCAP 0605, O 19.
Weinberg S., 2008. Cosmology, Oxford University Press, Oxford UK.
Yadav A.P.S. & Wandelt B.D., 2008. Evidence of primordial nongaussianity UN 1,) in the Wilkinson Microwave Anisotropy Probe 3-ycar data at 2.8a. Phys. Rev. Lett. 100, 181301.
Yokoyama S., Suyama T., & Tanaka T., 2007. Primordial nongaussianity in multi-scalar slow-roll inflation. JCAP 0707, 013. Yokoyama S., Suyama T., & Tanaka T., 2008a. Primordial nongaussianity in multi-scalar inflation. Phys. Rev. D 77, 083511.
Yokoyama S., Suyama T., · & Tanaka T., 2008b. Efficicnt diagrammatic computation method for higher order correlation functions of local type primordial curvature perturbations.arXiv:0810.3053 [astro-ph].
Zaballa l., Rodríguez, Y., & Lyth D.H., 2006. Higher order contributions to the primordial non-gaussianity. JCAP 0606, 013.
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales