Microscopía holográfica digital sin lentes con resolución micrométrica y fuentes multiespectrales

Cómo citar

Garcia-Sucerquia, J. (2015). Microscopía holográfica digital sin lentes con resolución micrométrica y fuentes multiespectrales. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat., 39, 20-28. https://doi.org/10.18257/raccefyn.231


La descarga de datos todavía no está disponible.


Se presenta en este trabajo la microscopia holográfica digital sin lentes (MHDSL) como una metodología de formación de imágenes con resolución micrométrica sin el uso de lentes y el uso de fuentes multiespectrales. Los principios y desarrollos recientes en el dominio esta tecnología de microscopia son expuestos desde la perspectiva los aportes realizados por nuestro grupo. MHDSL operando a color y con láseres de femto segundo son los avances resaltados en este trabajo. Los efectos de la coherencia espacial y temporal de la fuente de iluminación en el desempeño del MHDSL son analizados por medio de la comparación de las imágenes reconstruidas del microscopio usando un LED o un láser Ti:Sa mode-locked Ti:Sa laser de 12 fs. Una sección de la cabeza de una mosca Drosophila Melanogaster se utiliza como muestra con una compleja estructura interna. © 2015. Acad. Colomb. Cienc. Ex. Fis. Nat. Todos los derechos reservados.



Barton, J. J. (1988). Photoelectron Holography. Physical Review Letters, 61 (12). American Physical Society, 1356-59.

Bodian, D. (1936). A New Method for Staining Nerve Fibers and Nerve Endings in Mounted Paraffin Sections. The Anatomical Record, 65 (1). Wiley Subscription Services, Inc., A Wiley Company, 89-97.

Brunel, M., Shen, H., Coetmellec, S., Lebrun, D., and Ait Ameur, H. (2012). Femtosecond Digital in-Line Holography with the Fractional Fourier Transform: Application to Phase-Contrast Metrology. Applied Physics B, 106 (3). Springer-Verlag, 583-91.

Cuche, E., Bevilacqua, H., and Depeursinge, C. (1999). Digital Holography for Quantitative Phase-Contrast Imaging. Opt. Lett., 24 (5). OSA, 291-93.

Fink, H-W., Schmid, H., Kreuzer, H., and Wierzbicki, A. (1991). Atomic Resolution in Lensless Low-Energy Electron Holography. Physical Review Letters, 67 (12): 1543-46.Gabor, D. (1948). A New Microscopic Principle. Nature, 161:777-78.

Gabor, D. (1949). Microscopy by Reconstructed Wave-Fronts. Proc. R. Soc. London A, 197: 454.

Gabor, D. (1951). Microscopy by Reconstructed Wave Fronts: II. Proc. Phys. Soc. London B, 64: 449.

Garcia-Sucerquia, J., Trujillo, C., and Restrepo, J. (2014). Microscopio Holográfico Digital Sin Lentes (MHDSL) y Método Para Visualizar Muestras. Colombia: SIC (Colombia).

Garcia-Sucerquia, J. (2012). Color Lensless Digital Holographic Microscopy with Micrometer Resolution. Optics Letters, 37 (10): 1724-26.

Garcia-Sucerquia, J. (2013). Noise Reduction in Digital Lensless Holographic Microscopy by Engineering the Light from a Light-Emitting Diode. Applied Optics, 52 (1): A232–39.

Garcia-Sucerquia, J., Herrera-Ramírez, J., Castaneda, R.(2006). Incoherent Recovering of the Spatial Resolution in Digital Holography. Optics Communications, 260 (1): 62-67.

Garcia-Sucerquia, J., Xu, W., Jericho, S., Klages, P., Jericho, M., and Kreuzer, H. (2006). Digital in-Line Holographic Microscopy. Appl. Opt., 45 (5). OSA, 836-50.

Goodman, J W, and Lawrence, L. (1967). Digital image formation from electronically detected holograms. Applied Physics Letters, 11 (3).

Goodman, J W. (2005). Introduction to Fourier Optics. Greenwood Village: Roberst & Company Publishers.Gu, M. (2000). Advanced Optical Imaging Theory. Springer Series in Optical Sciences,. Vol. 75. Springer.

Jericho, M H, and Kreuzer, H. (2011). Point Source Digital In-Line Holographic Microscopy. In Coherent Light Microscopy, edited by P Ferraro, A Wax, and Z Zalevvsky, 3–30. Springer-Verlag Berlin Heidelberg.Kreis, T. (2002). Frequency Analysis of Digital Holography. Optical Engineering, 41 (4): 771-78.

Kreuzer, H. (2002). “Holographic microscope and method of hologram reconstruction,” US,641140.

Kreuzer, H J, Fink, H., Schmid, H., and Bonev, S. (1995). Holography of Holes, with Electrons and Photons. Journal of Microscopy, 178 (3), 191-97.

Leith, N., and Upatnieks, J. (1964). Wavefront Reconstruction with Diffused Illumination and Three-Dimensional Objects. Journal of the Optical Society of America, 54 (11). OSA, 1295–1301.

Mendoza-Yero, O., Calabuig, A., Tajahuerce, E., Lancis, J., Andrés, P., and Garcia-Sucerquia, J. (2013). Femtosecond Digital Lensless Holographic Microscopy to Image Biological Samples. Optics Letters, 38 (17). OSA, 3205-7.

Mendoza-Yero, O., Tajahuerce, E., Lancis, J., and Garcia-Sucerquia, J. (2013). Diffractive Digital Lensless Holo-graphic Microscopy with Fine Spectral Tuning. Optics Letters, 38 (12): 2107-9.

Petruck, P, Riesenberg, R., and Kowarschik, R. (2012). Optimized Coherence Parameters for High-Resolution Holographic Microscopy. Applied Physics B, 106 (2). Springer-Verlag, 339-48.

Picart, P., and Leval, J. (2008). General Theoretical Formulation of Image Formation in Digital Fresnel Holography: Erratum. J. Opt. Soc. Am. A, 26 (2). OSA, 244.

Repetto, L, Piano, E., and Pontiggia, C. (2004). Lensless Digital Holographic Microscope with Light-Emitting Diode Illumination. Opt. Lett., 29 (10). OSA, 1132-34.

Rosenhahn, A., Staier, F., Nisius, T., Schäfer, D., Barth, R., Christophis, C., Stadler, M. et al. (2009). Digital In-Line Holography with Femtosecond VUV Radiation Provided by the Free-Electron Laser FLASH. Opt. Express, 17 (10). OSA, 8220-28.

Schnars, U. (1994). Direct Phase Determination in Hologram Interferometry with Use of Digitally Recorded Holograms. J. Opt. Soc. Am. A, 11 (7). OSA, 2011-15.

Trujillo, C, and Garcia-Sucerquia, J. (2013). Accelerated Numerical Processing of Electronically Recorded Holograms With Reduced Speckle Noise. Image Processing, IEEE Transactions on, 22 (9): 3528-37.

Witte, S., Plauska, A., Ridder,M., Berge, Huibert D Mansvelder, H., and Groot, M. (2012). Short-Coherence off-Axis Holographic Phase Microscopy of Live Cell Dynamics. Biomed. Opt. Express, 3 (9). OSA, 2184–89.