Resumen
Exposición de algunos trabajos del autor sobre integrales singulares e hipersingulares, publicados entre 1953 y 1987, completada con resultados nuevos, observaciones sobre contribuciones de otros matemáticos, simplificaciones y algunas correcciones.
Palabras clave
Citas
Alvarez, Josefina; Carton-Lebrun, Christiane: Optimal spaces for the S'-convolutions with Marcel Riesz kernels and the N-dimensional Hilbert kernel. Analysis of divergence (Orono, ME, 1997), Appl. Numer. Harmon. Anal., Birkhiiuser, págs. 233-248.
Bjéirck, Jan-Erik: Rings of differential operators. NorthHolland, Amsterdam, 1979.
Bochner, Saloman: Vor/esungen über Fouriersche Jntegrale. Akademische Verlagsgesellschaft, Leipzig, 1932.
Bochner, Saloman: Theta relations with spherical harmonics. Proc. Nat. Acad. Sci. USA 37 (1951), 804-808.
Calderón, Alberto P.: On theorems of M. Riesz and Zygmund. Proc. Amer. Math. Soc. 1 (1950), 533-535.
Calderón, Alberto P: On a problem of Mihlin. 'Irans. Amer. Math. Soc. '78 (1955), 209-224.
Calderón, Alberto P: On singular integrals. Amer. J. Math 78 (1956), 289-309.
Calderón, Alberto P: Singular integral operators and differential equations. Amer. J. Math. 79 (1957), 901-921.
Cartwright, Mary Lucy: Manttscripts of Hardy, Littlewood, Marce/ Riesz and Titchmarsh. !3ull. London Math. Soc. 14 (1982), 472-532.
Christ, Michael: Lectures on singular integral operators. Conf. Board of the Math. Sciences, Regional Conferences in Math., No. 77. Amer. Math. Soc., 1990.
Diaz, Joaquin B.: On a class of partial differential equations of even arder. Amer. J. Math. 68 (1946), 611-659. Dierolf, Peter; Voigt, Jürgen: Convolution and S'-convolution of distributions. Collect. Math. 29 (1978), 185- 196.
Eskin, G. l.: Boundary value problems for el/iptic pseudor differential equations. Tanslations of Mathematical Monographs, Vol. 52. Amer Math. Soc., 1981.
Fefferman, C.; Stein, E. M.: HP spaces of several variables. Acta Math. 129 (1972), 137-193.
Fefferman, Charles: Selected theorems by Eli Stein. Essays on Fourier analysis in honor of Elias M. Stein, ed.: Ch. Fefferman, R. Fcfferman, St. Wainger. Princeton University Press, 1995, págs. 1-35.
Fueter, R.: Die Funktionentheorie der Differentialgleichungen 6u = O und 66u = O mit v-ier reellen Variablen. Commentarii Math. Helvetici 7 (1934/35), 307-330.
Giraud, Georges: Sur une classe générale d'équations a intégrales principales. C.R. Acad. Sci. París 202 (1936), 2124-2127.
Giraud, Georges: Complément a un résultat sur les équations ó. intégrales principales. C.R. Acad. Sci. Paris 203, 292-294. Hardy, G. H.; Littlewood, J. E.; Pólya, G.: Jnequalities. Cambridge University Press, 1934.
Hirata, Yukio: On convolutions in the theory of distributions. J. of Science of the Hiroshima University, Ser. A, 22 (1958), 89-98.
Hirata, Y.; Ogata, Hayao: On the exchange formula for distribul'ions. Journal of Science of the Hiroshima University, Ser. A. 22 (1958), 147-152.
Héirmander, Lars: Pseudo-differential operators. Comm. Pure Applied Math. 18 (1965), 501-517.
Héirmander, Lars: Pseudo-clifferenlial operat.ors ancl non-elliptic boundari; problems. Ann. of Math. 83 (1966), 129-209.
Héirmander, Lars: Pseudo-diffcrential operators and hypoelliptic equations. Singular Integrals, Procecdings of Symposia in Pure lVIathematics, Vol. 10. Amer. Math. Soc., 1967, págs. 138- 183.
Héirmander, Lars: The analysis of linear partial differential operators f. Grundlehren der mathematischen Wissenschaften 256. Springer, 1983.
Héirmander, Lars: The analysis of linear partial difjerential operators III. Grundlehren der mathematischen Wissenschaften 274. Springer, 1985.
Horváth, J.: Sur les fonctions conjuguées d plusieurs variables. Indag. Math. 15 (1953), 17-29.
Horváth, J: Singular integral operators and spherical harmonics. Trans. Amer. Math. Soc. 82 (1956), 52-63.
Horváth, J: Basic sets of polynomial solutions for partial differential equations. Proc. Amer. Math. Soc. 9 (1958), 569-575.
Horváth, J: On some composition formulas. Proc. Amer. Math. Soc. 10 (1959), 433-437.
Horváth, J: A generalization of the Cauchy-Riemann equations. Contributions to Diff. Equations 1 (1961), 39-58.
Horváth, J: Finite parts of distributions. Linear operators and approximations (Oberwolfach, August 14-22, 1971). Internat. Series Num. Math., Vol. 20. Birkhäuser, 1972, págs. 142-158.
Horváth, J: Distribuciones definidas por prolongación analítica. Rev. Colombiana Mat. 8 (1974), 47-95.
Horváth, J: Sur la convolution des distributions. Bull. Sci. Math.98 (1974), 183-192.
Horváth, J: Composition of hypersingular integral operators. Applicable Analysis 7 (1978), 171-190.
Horváth, J: Convolution des noyaux hypersinguliers. G. Choquet, M. Rogalski, J. Saint-Raimond (Eds.), Séminaire initiation á l'analyse, 19e année, 1979/80, expose no. 8. Univ París VI, 1980, págs. 1-17.
Horváth, J.; Ortner, N.; Wagner·, P.: Analytic continuation and convolution of hypersingular higher Hilbert-Riesz kernels. J. Math. Anal. Appl. 123 (1987), 429-447.
Humbert, Pierre: Potentiels et prépotentiels. Cahiers Scientifiques, fasc. 15. Gauthier-Villars, Paris, 1936.
Katznelson, Yitzhak: An introduction to harmonic analysis. Dover, New York, 1976.
Ketchum, P. W.: A complete solution of Laplace's equation by an infinite hypervariable. Amer. J. Math. 51 (1929), 179-188.
Kohn, J. J.: Singular integral equations for differential forms on Riemannian manifolds. Proc. Nat. Acad. Sci. USA 42 (1956), 650-653.
Kohn, J. J.; Nirenberg, L.: An algebra of pseudodifferential operators. Comm. Pure Applied Math. 18 (1965), 269-305.
Kumano-go, Hitoshi: Pseudo-differential operators. MIT Press, Cambridge, MA, 1974.
Lammel, Ernst: Generalizaciones de la teoría de las funciones de variables complejas. Segundo symposium sobre algunos problemas matemáticos que se están estudiando en Latinoamérica, Villavicencio-Mendoza, 1954. UNESCO, págs. 191-197.
Leray, Jean: Hyperbolic differential equations. The Institute of Advanced Study, Princeton, N.J., 1953, 1955.
Littlewood, J. E.: A mathematicians miscellany. Methuen, London, 1953, 1957.
Magnus, W; Oberhettinger, F.: Formulas and theorems for the special functions of mathematical physics. Chelsea, New York, 1949.
Mihlin, S. G.: Singular integral equations. Amer. Math. Soc. Translations, Ser 1, Vol. 10, 1962, págs. 84-198.
Miles, E. P. jr.: Three dimensional harmonic functions generated by analytic functions of a hypervariable. Amer. Math. Monthly 61 (1954), 694-697.
Lammel, Ernst: The analytic Cauchy problem for the iterated wave equation. Portugaliae Math. 18 (1959), 111-119.
Miles, E. P.; Williams, Ernest: A basic set of of homogeneous harmonic polynomials in k variables. Proc. Amer. Math. Soc. 6 (1955), 191-194.
Miles, E. P.; Williams, Ernest: A note on basic sets of homogeneous harmonic polynomials. Proc. Amer. Math. Soc. 6 (1955), 769-770.
Miles, E. P.; Williams, Ernest: The Cauchy problem for linear partial differential equations with restricted boundary conditions. Canadian J. Math. 8 (1956), 426-431.
Miles, E. P.; Williams, Ernest: A basic set of polynomial solutions for the Euler-Poisson-Darboux and Beltrami equations. Amer. Math. Monthly 63 (1956), 401-404.
Miles, E. P.; Williams, Ernest: Basic sets of polynomials for the iterated Laplace and wave equations. Duke Math. J. 26 (1959), 35-40.
Miles, E. P.; Young, E. C.: Basic sets of polynomials for generalized Beltrami and Euler-Poisson-Darboux equations and their iterates. Proc. Amer. Math. Soc. 18 (1967), 981-986.
Okikiolu, George O.: Special integral operators, Vol. II - Poisson operators, conjugate operators and related integrals. Okikiolu Sci. and Industr. Org., London, 1981.
Ortiz F., Alejandro: Operadores integrales singulares. Universidad Nacional de Trujillo, Depto. de Matemática, Trujillo, Perú, 1972.
Ortner, Norbert: Faltung hypersingulärer integraloperatoren. Math. Ann. 248 (1980), 19-46.
Ortner, Norbert: Sur la convolution des distributions. C.R. Acad. Sci. París, Sér A-B 290 (1980), 533-536.
Ortner, Norbert: Convolution des distributions et des noyaux euclidiens. G. Choquet, M. Rogalski, J. Saint - Raimond (Eds.), Séminaire initiation a l'analyse, 19e année, 1979/1980, exposé no. 12. Univ Paris VI, 1980, págs. 1-11.
Ortner, Norbert: Analytic continuation and convolution of hypersingular higher Hilbert-Riesz kernels. Alfred Haar memorial conference, Budapest, 1985, págs. 675-685.
Ortner, Norbert: On some contributions of John Horváth to the theory of distributions. J. Math. Anal. Appl. 297 (2004), 353-383.
Ortner, N.: Wagner, P.:Convolution groupsfor cuasihyperbolic systems of differential operators.
Plessner, A.: Zur Theorie der konjugierten trigonometrischen Reihen. Mitteilungen Math. Seminar Gieben 10 (1923), 1-36.
Protter, M. H.: Generalized spherical harmonics. Trans. Amer. Math. Soc. 63 (1948), 314-341.
Protter, M. H.: On a class of harmonic polynomials. Portugaliae Math. 10 (1951), 11-22.
Riesz, Frigyes: Über die Randwerte einer analytischen Funktion. Math. Zeitschrift 18 (1923), 117-124; (Euvres complétes, Budapest, 1960, D7, págs. 645-653.
Riesz, Marcel: Sur la sommation des séries de Fourier. Acta Sci. Math. Szeged 1 (1923), 104-113.
Riesz, Marce: Sur les fonctions conjuguées Math. Zeitschrift 27 (1927), 218-244.
Riesz, Marce: L'intégrale de Riemann-Liouville et le probléme de Cauchy. Acta Math. 81 (1949), 1-223.
Riesz, Marce: Collected papers. Springer-Verlag, 1988.
Roider, Bernhard: Surla convolution des distributions. Bull. Sci. Math. 100 (1976), 193-199.
Rudin, Walter: Fourier· analysis on grous. Wiley, 1962, 1990.
Rudin, Walter: Hypersingular integrals and their applications. Taylor and Francis, London, 2002.
Schaad, Margrit: Über eine Klasse van rechtsregulären Funktionen mit 2n reellen Variablen. Disertación, Zurich, 1944.
Schwartz, Laurent: Théorie des distributions. Nouvelle édition. Hermann, Paris, 1966.
Schwartz, Laurent: Produits tensoriels topologiques d'espaces vectoriels topologiques. Espaces vectoriels topologiques nucléaires. Applications. Séminaire, Institut Henri Poincaré, Paris, 1954.
Schwartz, Laurent: Distributions a valeurs vectorielles I. Ann. Institut Fourier Grenoble 7 (1957), 1-141.
Schwartz, Laurent: Distributions á valeurs vectorielles II. Ann. Institut Fourier Grenoble 8 (1959), 1-209.
Seeley, R. T.: Elliptic singular integral equations. Singular Integrals, Proceedings of Symposia in Pure Mathematics, Vol. 10, Amer. Math. Soc. 1967, págs. 308-315.
Shiraishi, Risai: On the definition of convolutions for distributions. J. Sci. Hiroshima University, Ser. A 23 (1959), 19-32.
Simanca, S. R.: Pseudo-differential operators. Pitman Research Notes in Math. Series 236. Longman Scientific and Technical, Harlow, Essex, UK, 1990.
Staub, Alfred: Integralsätze hyperkomplexer, regulärer Funktionen van 2n reellen Variablen. Disertación, Zurich, 1946.
Stein, Elias M.: Singular integrals and differentiability properties of functions. Princeton University Press, 1971.
Harmonic analysis: real-variable methods, orthogonality and oscillatory; integrals. Princeton University Press, 1993.
Stein, E. M; Weiss, G.: On the theory of harmonic functions of several variables I, The theory of HP spaces. Acta Math. 103 (1960), 25-62.
Stein, E. M; Weiss, G.: On the theory of harmonic functions of several variables II, Behavior near the boundary. Acta Math. 106 (1961), 137-174.
Stein, E. M; Weiss, G.: Introduction to Fourier analysis in Euclidean Spaces. Princeton University Press, 1971.
Taylor, Michael E.: Pseudodifferential operators. Princeton University Press, 1981.
Thorin, G. 0.: An extension of a convexity theorem due to M. Riesz. Kungl. Fysiografiska Sälskapets i Lund Förhandlinger 8 (1938), no. 14.
Thorin, G. 0.-: Convexity theorems generalizing those of M. Riesz and Hadamard, with some applications. Disertación Lund, Meddelanden fran Lunds Universitets Matematiska Seminarium, Vol. 9 (1948).
Titchmarsh, E. C.: Introduction to the theory of Fourier· integrals. Cambridge University Press, 1948.
Treves, Francois: Introduction to pseudodifferential and Fourier integral operators. Vol. 1, Pseudodifferential operators. Plenum, New York, 1980.
Unterberger, A; Bokobza, J.: Les operateurs de Calderón-Zygmund précisés. C.R. Acad. Sci. Paris 259 (1965), 1612-1614.
Wagner, Peter: Zur Faltung van Distributionen. Math. Ann. 276 (1987), 467-485.
Wagner, Peter-: Bernstein-Sato-Polynome und Faltungsgruppen zu Differentialoperatoren. Zeitschrift für Analysis und ihre Anwendungen 8 (1989), 407-423.
Weiss, Guido: Análisis armónico en varias variables. Teoría de los espacios HP. Cursos y seminarios matemáticos, fasc. 9, Universidad de Buenos Aires, 1960.
Wicht, M. C.: Recursion and interrelation for Miles Williams biharmonics. Amer. Math. Monthly 64 (1957), 463.
Yoshinaga, Kyoichi; Ogata, Hayao: On convolutions. J. of Science of the Hiroshima University, Ser A 22 (1968) 15-24
Zaidman, S.: Distributions and pseudo-differential operators. Pitman Research Notes in Math. Series 248, Longman Scientific and Technical, Harlow, Essex, UK, 1991.
Zaidman, S.: Topics in pseudo-differential operators. Pitman Research Notes in Math. Series 359, Longman, Harlow, Essex, UK, 1996.
Zygmund, Antoni: Trigonometric series, Second edition. Cambridge University Press, 1959.
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales