Resumen
Dos nodos de Ranvier se modelan mediante circuitos de FitzHugh-Nagumo acoplados el´ectricamente y se estudia su comportamiento din´amico. El par´ametro de acoplamiento, con valores en la vecindad de la bifurcaci´on de Hopf, genera variados tipos de comportamiento que dependen adem´as de las condiciones iniciales: excitabilidad, biestabilidad y birritmicidad.
Palabras clave
Citas
Breman, J.G., A. Egan, and G.T. Keusch. The intolerable burden of malaria: a new look at the numbers. Am J Trop Med Hyg, 2001. 64 (1-2 Suppl): p. iv-vii. 2: Murphy SC, et al. Gaps in the childhood malaria... [PMID:11425178]Related Articles, Links.
Sachs, J. and P. Malaney. The economic and social burden of malaria. Nature, 2002. 415(6872): p. 680-5.
Organization, W.T. International Tourism arrivals by subregion. http://www.world-tourism.org/market_research/facts&figureslatest_data/tita01_07-02.pdf, 2002.
Mendis, K., et al. The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg, 2001. 64 (1-2 Suppl): p. 97-106.
Baird, J.K. and K.H. Rieckmann. Can primaquine therapy for vivax malaria be improved? Trends Parasitol, 2003. 19(3):p. 115-20. 2: Hale BR, et al. A randomized, double-blind, p...[PMID:12594633]Related Articles, Links.
Harinasuta, T., P. Suntharasamai, and C. Viravan. Chloroquine-resistant falciparum malaria in Thailand. Lancet, 1965. 2(7414): p. 657-60.
Comer, R.D., et al. Chloroquine resistance in Plasmodium falciparum malaria on the Pacific coast of Colombia. Am J Trop Med Hyg, 1968. 17(6): p. 795-9.
Davidson, G. and A. Zahar. The practical implication of resistance of malaria vectors to insecticides, in Bulletin of the World Health Organization, WHO, Editor. 1973, WHO: Geneva. p. 475-483.
Kohler, G. and C. Milstein. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 1975. 256(5517): p. 495-7.
Kohler, G., S.C. Howe, and C. Milstein. Fusion between immunoglobulin-secreting and nonsecreting myeloma cell lines. Eur J Immunol, 1976. 6(4): p. 292-5. 3: Kohler G, et al. Continuous cultures of fused ...[PMID:1172191]Related Articles, Links.
Kohler, G. and C. Milstein. Derivation of specific antibody producing tissue culture and tumor lines by cell fusion. Eur J Immunol, 1976. 6(7): p. 511-9. 2: Kohler G, et al. Fusion between immunoglobulin...[PMID:825374]Related Articles, Links.
Berg, P., et al. Letter: Potential biohazards of recombinant DNA molecules. Science, 1974. 185(148): p. 303.
Cohen, S.N., et al. Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci U S A, 1973. 70(11): p. 3240-4.
Krans, H.M. [Human insulin prepared with the aid of recombinant DNA]. Ned Tijdschr Geneeskd, 1981. 125(21): p. 840-2. 2: [No authors listed] From the NIH: Insulin and hum...[PMID:7012389]Related Articles, Links.
Schroder, E. and R. Hempel. Bradykinin, kallidin, and their synthetic analogues. Experientia, 1964. 20(10): p. 529-44.
Engers, H. and T. Godal. Malaria vaccine development: current status. Parasitol Immunol, 1998. 14(2): p. 56-64.
Gwadz, R.W. and I. Green. Malaria immunization in Rhesus monkeys. A vaccine effective against both the sexual and asexual stages of Plasmodium knowlesi. J Exp Med, 1978. 148(5): p. 1311-23.
Carter, R., et al. Target antigens in malaria transmission blocking immunity. Philos Trans R Soc Lond B Biol Sci, 1984. 307(1131): p. 201-13.
Carter, R. and K. Mendis. Transmission immunity in malaria: reflections on the underlying immune mechanisms during natural infections and following artificial immunization. Mem Inst Oswaldo Cruz, 1992. 87(Suppl 3): p. 169-73.
Baird, J.K., et al. Age-dependent acquired protection against Plasmodium falciparum in people having two years exposure to hyperendemic malaria. Am J Trop Med Hyg, 1991. 45(1): p. 65-76.
Andersen, E., et al. Assessment of age-dependent immunity to malaria in transmigrants. Am J Trop Med Hyg, 1997. 56(6):p. 647-9. 3: Baird JK, et al. Age-dependent acquired protec...[PMID:1867349]Related Articles, Links.
Baird, J.K. Age-dependent characteristics of protection v. susceptibility to Plasmodium falciparum. Ann Trop Med Parasitol, 1998. 92(4): p. 367-90. 2: Andersen E, et al. Assessment of age-dependent i...[PMID:9230797]Related Articles, Links.
Sabchareon, A., et al. Parasitologic and clinical human response to immunoglobulin administration in falciparum malaria. Am J Trop Med Hyg, 1991. 45(3): p. 297-308.
McGregor, I.E. The passive transfer of human malarial immunity. Am J Trop Med Hyg, 1964. 13: p. 237-239.
Clyde, D.F., Immunization of man against falciparum and vivax malaria by use of attenuated sporozoites. Am J Trop Med Hyg, 1975. 24(3): p. 397-401.
Clyde, D.F. Immunity to falciparum and vivax malaria induced by irradiated sporozoites: a review of the University of Maryland studies, 1971-75. Bull World Health Organ, 1990. 68(Suppl): p. 9-12.
Rieckmann, K.H. Human immunization with attenuated sporozoites. Bulletin of the World Health Organization, 1990. 28. Arevalo-Herrera, M. and S. Herrera. Plasmodium vivax malaria vaccine development. Mol Immunol, 2001. 38(6): p. 443-55.
Arevalo-Herrera, M., et al. Identification of HLA-A2 restricted CD8(+) T-lymphocyte responses to Plasmodium vivax circumsporozoite protein in individuals naturally exposed to malaria. Parasite Immunol, 2002. 24(3): p. 161-9.
Herrera, S., et al. Immunization of Aotus monkeys with Plasmodium falciparum blood-stage recombinant proteins. Proc Natl Acad Sci U S A, 1990. 87(10): p. 4017-21.
Herrera, S., et al. Antigenicity and immunogenicity of multiple antigen peptides (MAP) containing P. vivax CS epitopes in Aotus monkeys. Parasite Immunol, 1997. 19(4): p. 161-70.
Perlaza, B.L., et al. Immunogenicity of four Plasmodium falciparum preerythrocytic antigens in Aotus lemurinus monkeys. Infect Immun, 1998. 66(7): p. 3423-8.
Herrera, S., et al. Aotus monkeys: their great value for antimalaria vaccines and drug testing. Int J Parasitol, 2002. 32(13):p. 1625-35.
Lopez, J.A., et al. Recognition of synthetic 104-mer and 102-mer peptides corresponding to N- and C-terminal nonrepeat regions of the Plasmodium falciparum circumsporozoite protein by sera from human donors. Am J Trop Med Hyg, 1996. 55(4): p. 424-9.
Perlaza, B.L., et al. Preclinical study of long synthetic peptides derived from P. falciparum liver stage antigen 3 in Aotus lemurinus griseimembra monkeys. In preparation, 2000. 36. Herrera, M.A., et al. Protection against malaria in Aotus monkeys immunized with a recombinant blood-stage antigen fused to a universal T-cell epitope: correlation of serum gamma interferon levels with protection.
Infection & Immunity, 1992. 60(1): p. 154-8.
Michon, P.A., et al. Serologic responses to recombinant Plasmodium vivax Duffy binding protein in a Colombian village. Am J Trop Med Hyg, 1998. 59(4): p. 597-9.
Herrera, S., et al. Human recognition of T cell epitopes on the Plasmodium vivax circumsporozoite protein. J Immunol, 1992. 148(12): p. 3986-90.
Harpaz, R., et al. Serum cytokine profiles in experimental human malaria. Relationship to protection and disease course after challenge. J Clin Invest, 1992. 90(2): p. 515-23.
Di Fabio, S., et al. Quantitation of human influenza virus-specific cytotoxic T lymphocytes: correlation of cytotoxicity and increased numbers of IFN-gamma producing CD8+ T cells. Int Immunol, 1994. 6(1): p. 11-9.
Zapata, J.C., et al. Reproducible infection of intact Aotus lemurinus griseimembra monkeys by Plasmodium falciparum sporozoite inoculation. J Parasitol, 2002. 88(4): p. 723-9.
Taylor, D.W. & W.A. Siddiqui. Susceptibility of owl monkeys to Plasmodium falciparum infection in relation to location of origin, phenotype, and karyotype. J Parasitol, 1979. 65(2): p. 267-71.
Collins, W.E., et al. The Santa Lucia strain of Plasmodium falciparum as a model for vaccine studies. I. Development in Aotus lemurinus griseimembra monkeys. Am J Trop Med Hyg, 1996. 54(4): p. 372-9.
Collins, W.E., et al. Further studies on the sporozoite transmission of the Salvador I strain of Plasmodium vivax. J Parasitol, 1994. 80(4):p. 512-7.
Salas, M.L., et al. Development of sporogonic cycle of Plasmodium vivax in experimentally infected Anopheles albimanus mosquitoes. Mem Inst Oswaldo Cruz, 1994. 89(Suppl 2): p. 115-9.
Beck, J.W. Malaria and its diagnosis. Trans R Soc Trop Med Hyg, 1968. 62(1): p. 58-68.
Ciceron, L., et al. Development of a Plasmodium PCR for monitoring efficacy of antimalarial treatment. J Clin Microbiol, 1999. 37(1): p. 35-8.
Zimmerman, R.H. Ecology of malaria vectors in the Americas and future direction. Mem Inst Oswaldo Cruz, 1992. 87(Suppl 3): p. 371-83. 2: Breeland SG. Population patterns of Anophe...[PMID:4548395]Related Articles, Links.
Warren, M., et al. Morphologic variants of Anopheles albimanus and susceptibility to Plasmodium vivax and P. falciparum. Am J Trop Med Hyg, 1977. 26(4): p. 607-11.
Chan, A.S., et al. Susceptibility of three laboratory strains of Anopheles albimanus (Diptera: Culicidae) to coindigenous Plasmodium vivax in southern Mexico. J Med Entomol, 1994. 31(3): p. 400-3. 2: Warren M, et al. Morphologic variants of Anoph...[PMID:329696]Related Articles, Links.
Herrera, S., et al. Proceso para el desarrollo de una vacuna contra la fase hepática de Plasmodium vivax. Colombia Médica (En prensa), 2004.
Graves, P.M. Studies on the use of a membrane feeding technique for infecting Anopheles gambiae with Plasmodium falciparum. Trans R Soc Trop Med Hyg, 1980. 74(6): p. 738-42.
Herrera, S., et al. Phase I Clinical Trial of a synthetic CS protein vaccine against P. vivax in Colombia. NEJM (Sometido), 2004.
Templeton, T.J. and D.C. Kaslow. Cloning and cross-species comparison of the thrombospondin-related anonymous protein (TRAP) gene from Plasmodium knowlesi, Plasmodium vivax and Plasmodium gallinaceum. Mol Biochem Parasitol, 1997. 84(1): p. 13-24.
Arévalo, M., et al. Ensayo Clínico Fase Ib de un candidato a vacuna contra malaria: Seguridad e inmunogenicidad de péptidos sintéticos derivados de la proteínas CS de Plasmodium vivax formulados en dos adyuvantes. Colciencias Contrato No. 487-2003., 2003.
Perlaza, B.L., et al. Immunogenicity and Protective efficacy of P. falciparum liver-stage Ag-3 in Aotus lemurinus griseimembra monkeys. European Journal of Immunology, 2003. 33: p. 1321-1327.
Herrera, S., et al. A conserved region of the MSP-1 surface protein of Plasmodium falciparum contains a recognition sequence for erythrocyte spectrin. Embo J, 1993. 12(4): p. 1607-14.
Pradel, G., S. Garapaty, and U. Frevert. Proteoglycans mediate malaria sporozoite tarjeting to the liver. Mol Microbiol, 2002. 45(3): p. 637-651.
Stoute, J.A., et al. Long-term efficacy and immune responses following immunization with the RTS,S malaria vaccine. J Infect Dis, 1998. 178(4): p. 1139-44.
Bottius, E., et al. A novel Plasmodium falciparum sporozoite and liver stage antigen (SALSA) defines major B, T helper, and CTL epitopes. J Immunol, 1996. 156(8): p. 2874-84.
Fidock, D.A., et al. Plasmodium falciparum liver stage antigen 1 is well conserved and contains potent B and T cell determinants. Journal of Immunology, 1994. 153(1): p. 190-204.
Pasquetto, V., et al. Plasmodium falciparum sporozoite invasion is inhibited by naturally acquired or experimentally induced polyclonal antibodies to the STARP antigen [published erratum appears in Eur J Immunol 1997 Nov;27(11):3084]. Eur J Immunol, 1997. 27(10): p. 2502-13.
Aidoo, M., et al. Cytotoxic T-lymphocyte epitopes for HLA-B53 and other HLA types in the malaria vaccine candidate liver-stage antigen 3. Infect Immun, 2000. 68(1): p. 227-32.
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales