CONTRIBUCIÓN AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES PARCIALES DE TIPO ELÍPTICO
PDF

Cómo citar

Cossio, J. . (2023). CONTRIBUCIÓN AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES PARCIALES DE TIPO ELÍPTICO. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 28(106), 135–145. https://doi.org/10.18257/raccefyn.28(106).2004.2038

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

En este artículo se presentan los resultados más importantes de mi trabajo de investigación en el estudio de la existencia y de las propiedades de las soluciones de ecuaciones diferenciales parciales no lineales.
Donde λ ∈ R, Ω es un dominio acotado en RN con frontera suave, ∆ = n i=0 ∂/∂x2 i es el operador de Laplace y f : R → R es una función no lineal. Se presentan teoremas obtenidos utilizando teoría de bifurcación, métodos variacionales y un principio de minimax desarrollado por el autor en colaboración con A. Castro y J. M. Neuberger ([Cas-Cos-Nu1], 1997). Además, se incluyen algunos algoritmos para construir y visualizar soluciones a problemas no lineales del tipo (1) y una serie de preguntas abiertas.

https://doi.org/10.18257/raccefyn.28(106).2004.2038

Palabras clave

Ecuaciones elípticas semilineales | teoría de bifurcación | métodos variacionales | construcción de soluciones
PDF

Citas

[Ad-Cas] H. Adu ́en and A. Castro, Infinitely Many Nonradial Solutions to a Superlinear Dirichlet Problem, Proc. Amer. Math. Soc. 131 (2003), 835–843.

[Am-Pro] A. Ambrosetti and G. Prodi, A Primer of Nonlinear Analysis, Cambridge Studies in Advanced Mathematics 34, Cambridge University Press, Cambridge 1993.

[Am-Ra] A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory, J. Funct. Anal. 14 (1973), 349–381.

[Ar-Cos1] H. Arango y J. Cossio, Construcci ́on de Soluciones Radialmente Sim ́etricas para un Problema El ́ıptico Semilineal, Rev. Colombiana Mat.30 (1996), 77–92.

[Ar-Cos2] H. Arango and J. Cossio, Explicit Construction, Uniqueness, and Bifurcation curves of Solutions for a Nonlinear Dirichlet Problem in a Ball, Electronic Journal of Differential Equations, Conf. 05, 2000, 1–12.

[Cas1] A. Castro, M ́etodos de Reducci ́on via Minimax, Primer Simposio Colombiano de An ́alisis Funcional, Medell ́ın, Colombia, (1981).

[Cas-Cos1] A. Castro and J. Cossio, A Bifurcation Theorem and Applications, Dynamic Systems and Applications 2 (1993), 221–226.

[Cas-Cos2] A. Castro and J. Cossio, Multiple Radial Solutions for a Semilinear Dirichlet Problem in a ball, Rev. Colombiana Mat. 27 (1993), 15–24.

[Cas-Cos3] A. Castro and J. Cossio, Multiple Solutions for a Nonlinear Dirichlet Problem, SIAM J. Math. Anal. 25 (1994), 1554–1561.

[Cas-Cos-Nu1] A. Castro, J. Cossio and J. M. Neuberger, A Sign-Changing Solution for a Superlinear Dirichlet Problem, Rocky Mountain J.M. 27 (1997), 1041–1053.

[Cas-Cos-Nu2] A. Castro, J. Cossio and J. M. Neuberger, On Multiple Solutions of a Nonlinear Dirichlet Problem, Nonlinear Analysis, Theory, Methods & Applications, 30 (1997), 3657–3662.

[Cas-Cos-Nu3] A. Castro, J. Cossio and J. M. Neuberger, A Minimax Principle, Index of the Critical Point, and Existence of Sign-changing Solutions to Elliptic Boundary Value Problems, Electronic Journal of Differential Equations 1998 (1998), 1–18.

[Cas-Laz1] A. Castro and A. C. Lazer, Applications of a Max-min Principle, Rev. Colombiana Mat. 10 (1976), 141–149.

[Cas-Laz2] A. Castro and A. C. Lazer, Critical Point Theory and the Number of Solutions of a Nonlinear Dirichlet Problem, Ann. Mat. Pura Appl. 70 (1979), 113–137.

[Cos] J. Cossio, M ́ultiples Soluciones para un Problema El ́ıptico Semilineal. En Memorias de la III Escuela de Verano en geometr ́ıa diferencial, ecuaciones diferenciales parciales y an ́alisis num ́erico. Academia Colombiana de Ciencias Exactas F ́ısicas y Naturales, Colecci ́on memorias No. 7, 1995, 53–59.

[Cos-Le-Nu] J. Cossio, S. Lee, and J. M. Neuberger, A Reduction Algorithm for Sublinear Dirichlet Problems, Nonlinear Analysis, 47 (2001), 3379–3390.

[Cos-He] J. Cossio and S. Herr ́on, Nontrivial Solutions for a Semilinear Dirichlet Problem with Nonlinearity Crossing Multiples Eigenvalues, Submitted for publication in the Journal of Dynamics and Differential Equations.

[Cos-Ve] J. Cossio y C. V ́elez, Soluciones no Triviales para un Problema de Dirichlet Asint ́oticamente Lineal, Aceptado para publicaci ́on en la Revista Colombiana de Matem ́aticas, 2003.

[Ch] S. Chandrasekhar, An Introduction to the Study of Stellar Structure, University of Chicago Press, 1939.

[Cr-Ra] M. Crandall and P. Rabinowitz, Bifurcation from Simple Eigenvalue, J. Funct. Anal. 8 (1971), 321–340.

[Da] E. Dancer, Counterexamples to Some Conjectures on the Number of Solutions of Nonlinear Equations, Math. Ann. 16 (1976), 1361–1376.

[De-War] E. Deumens and H. Warchall, Explicit Construction of all Spherical Symmetric Solitary Waves for a Nonlinear Wave Equation in Multiple Dimensions, Nonlinear Analysis, Theory, Methods and Applications 12 (1988), 419–447.

[Ek] I. Ekeland, On the Variational Principle, J. Math. Anal. Appl. 47 (1974), 324–353.

[Es] M. Esteban, Multiple Solutions of Semilinear Elliptic Problems in a Ball, J. Differential Equations 57 (1985), 112–137.

[He] M. Henon, Numerical Experiments on the Stability of spherical Stellar Systems, Astro. Astrophys. 24 (1973), 229–238.

[Li-Ya] E. Lieb and H. T. Yau, The Chandrasekhar Theory of Stellar Collapse as the Limit of Quantum Mechanics, Commun. Math. Phys. 112 (1987), 147–174.

[Ke-An] J. Keller and S. Antman, Bifurcation Theory and Nonlinear Eigenvalue problems, W. A. Benjamin, Inc., New York, 1969, 395-409.

[Lan-Laz-Me] E. M. Landesman, A. C. Lazer, and D. Meyers, On Saddle Point Problems in the Calculus of Variations, the Ritz Algorithm, and Monotone Convergence, J. Math. Anal. Appl. 53 (1975), 594–614.

[Laz-Sol] A. C. Lazer and S. Solimini, Nontrivial Solutions of Operator Equations and Morse Indices of Critical Points of Min-Max Type, Nonlinear Analysis TMA 12 (1988), 761–775.

[Lj-Sc] L. Ljusternik and L. Schnirelman, M ́ethodes Topologiques dans les Probl ́emes Variationnels, Hermann, Paris, 1934.

[Mors1] M. Morse, Relations Between the Critical Points of a Real Function of n Independent Variables, Trans. Amer. Math. Soc. 27 (1925), 345–396.

[Mors2] M. Morse, The Calculus of Variations in the Large, Amer. Math. Soc. Colloq. Publ., 18, 1934.

[Pa-Sm] R. Palais and S. Smale, A Generalized Morse Theory, Bull. Amer. Math. Soc. 70 (1964), 165–171.

[Ra1] P. Rabinowitz, Some Global Results for Nonlinear Eigenvalue Problems, J. Funct. Anal. 7 (1971), 487-513.

[Ra2] P. Rabinowitz, Topological Methods in Bifurcation Theory, S ́eminaire de Math ́ematiques Sup ́erieures, S ́eminaire Scientifique OTAN, Les Presses de l’Universit ́e de Montreal, Montreal, 1985.

[Ra3] P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential equations, Regional Conference Series in Mathematics, 65, Providence, R. I., AMS (1986).

[Wa] Z. Q. Wang, On a Superlinear Elliptic Equation, Ann. Inst. H. Poincar ́e. Analyse Non Lin ́eaire 8 (1991), 43–57.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2023 https://creativecommons.org/licenses/by-nc-nd/4.0