GEOMETRÍA DE VARIEDADES BANDERA
PDF

Cómo citar

Paredes , . M. ., & Pinzón, S. . (2023). GEOMETRÍA DE VARIEDADES BANDERA. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 28(106), 123–134. https://doi.org/10.18257/raccefyn.28(106).2004.2026

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

En este trabajo hacemos un recuento histórico de resultados sobre la geometía de las variedades bandera. Principalmente abordamos la relación existente entre métodos combinatorios y propiedades geométricas.

https://doi.org/10.18257/raccefyn.28(106).2004.2026

Palabras clave

Variedades bandera | geometría hermítica | sistemas de raíces | grupos de Lie semisimples
PDF

Citas

J. F. Adams, Lectures on Lie Groups, New York, 1969.

M. Black, Harmonic Maps into Homogeneous Spaces, Pitman Research Notes, Math series 255. Longman, Harlow, 1991.

A. Borel, K ̈ahlerian coset spaces of semi-simple Lie groups, Proc. Nat. Acad. of Sci. 40:1147-1151, 1954.

A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces I, Amer. J. Math. 80:458-538, 1958.

A. E. Brouwer, The enumeration of locally transitive tournaments. Afdeling Zuivere Wiskunde [Department of Pure Mathematics], 138. Mathematisch Centrum, Amsterdam, 1980.

F. E. Burstall and S. Salamon, Tournaments, flags and harmonic maps, Math Ann. 277:249-265, 1987.

N. Cohen, C. J. C. Negreiros and L. A. B. San Martin, Characterization of (1,2)–symplectic metrics on flag manifolds, Contemporary Math. 288:300–304, 2002.

N. Cohen, C. J. C. Negreiros and L. A. B. San Martin, (1,2)-Symplectic metrics, flag manifolds and tournaments, Bull. of London Math. Soc. 34:641-649, 2002.

N. Cohen, C. J. C. Negreiros and L. A. B. San Martin, A rank-three condition for invariant (1, 2)-symplectic almost Hermitian structures on flag manifolds, Bull. Braz. Math. Soc. New Series 33: 49-73, 2002.

J. Eells and S. Salamon, Twistorial constructions of harmonic maps of surfaces into four-manifolds, Ann. Scuola Norm. Sup. Pisa (4) 12:589-640, 1985.

J. Eells and L. Lemaire, Another Report on Harmonic Maps, Bull. of London Math. Soc. 20:385-524, 1988.

A. Gray and L. M. Hervella, The sixteen classes of almost hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl 123:35-58, 1980.

S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Acad. Press, 1978.

J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, 1980.

S. Ishihara and K. Yano, On Integrability Conditions of a structure f satisfying F3 + F = 0, Quart. J. Math. Oxford (2), 15:217-222, 1964.

V. Kac, Infinite dimensional Lie algebras. Cambridge University Press, 1985.

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 1, Interscience Publishers, 1963.

A. Lichnerowicz, Applications harmoniques et vari ́et ́es K ̈ahleriennes, Symp. Math. 3 (Bologna), 341-402, 1970.

E. C. L. Santos, Estruturas Quase-Hermitianas Invariantes e Ideais Abelianos, Disertaci ́on de Maestr ́ıa, Universidade Estadual de Campinas, 2003.

X. Mo and C. J. C. Negreiros, Tournaments and Geometry of Full Flag Manifolds, Proceedings of the XI Brazilian Topology Meeting, Rio Claro, Brazil, World Scientific, 1999.

X. Mo and C. J. C. Negreiros, Horizontal f-structures, -matrices and Equiharmonic moving flags, Relatorio de Pesquisa, Instituto de Matem ́atica, Estat ́ıstica e Computa ̧c ̃ao Cient ́ıfica, Universidade Estadual de Campinas, 1999.

X. Mo and C. J. C. Negreiros, (1, 2)-Symplectic structure on flag manifolds, Tˆohoku Math. J. 52:271-282, 2000.

W. Moon, Topics on Tournaments, Holt, Reinhart and Winston, 1968.

C. J. C. Negreiros, Some remarks about harmonic maps into flag manifolds, Indiana Univ. Math. J. 37:617-636, 1988.

M. Paredes, Aspectos da geometria complexa das variedades bandeira, Tesis doctoral, Universidade Estadual de Campinas, Brasil, 2000.

M. Paredes, Families of (1,2)–symplectic metrics on flag manifolds, Internat. J. Math. Math. Sci. 29:651–664, 2002.

S. Pinzon ́ , Variedades Bandeira, f–Estruturas e Métricas (1,2)–Simpl ́eticas, Tesis doctoral, Universidade Estadual de Campinas, Brasil, 2003.

A. Pressley and G. Segal, Loop Groups, Clarendon Press, Oxford, 1986.

J. H. Rawnsley, f–Structures, f–Twistor Spaces and Harmonic Maps, Lec. Notes in Math. 1164, 1986.

S. Salamon, Harmonic and holomorphic maps, Lec. Notes in Math. 1164, Springer 1986.

L. A. B. San Martin Algebras de Lie, Campinas-S.P., Editora da Unicamp, 1999.

L. A. B. San Martin and C. J. C. Negreiros, Invariant almost Hermitian structures on flag manifolds, Adv. Math. 178: 277–310, 2003.

J. Y. Shi, Alcoves corresponding to an affine Weyl group, J. London Math. Soc. 35:42-45, 1987.

R. C. de Jesus Silva, Estruturas Quase Hermitianas Invariantes em Espa ̧cos Homogˆeneos de Grupos Semi-simples, Tesis doctoral, Universidade Estadual de Campinas, Brasil, 2003.

G. Warner, Harmonic Analysis on Semi-Simple Lie Groups, I., Springer-Verlag, 1972.

J. A. Wolf and A. Gray, Homogeneous spaces defined by Lie group automorphisms, I., J. Diff. Geom. 2:77-114, 1968.

J. A. Wolf and A. Gray, Homogeneous spaces defined by Lie group automorphisms, II., J. Diff. Geom. 2:115-159, 1968.

K. Yano, On a structure defined by a tensor field of type (1,1) satisfying F3 + F = 0, Tensor 14:99-109, 1963.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2023 https://creativecommons.org/licenses/by-nc-nd/4.0