Resumen
El cuidado de la salud está experimentando un cambio de paradigma con respecto al diagnóstico y manejo de enfermedades orientado a llevar la medicina y la atención personalizadas a quienes lo necesitan. En este sentido, las ciencias puras han encontrado aliados en la nanociencia, la nanotecnología y otras tecnologías convergentes y disruptivas para asumir tan exigente tarea. Aquí se ilustra cómo dicha convergencia puede generar soluciones sin precedentes en el cuidado de la salud, por ejemplo, con el uso de nanobiosensores electroquímicos para monitorear patógenos y biomarcadores multiparamétricos a diferentes niveles moleculares y dilucidar el estado de salud de un individuo de manera personalizada. Se presentan, asimismo, ejemplos de nanobiosensores electroquímicos explorados para el diagnóstico, su potencial para el pronóstico y la posible evaluación del riesgo de complicaciones en pacientes. En este contexto, los diagnósticos inteligentes juegan un papel crucial en el cuidado de la salud 4.0, ya que puede avanzarse desde los datos inteligentes hacia dispositivos de diagnóstico capaces de analizar macrodatos que se beneficien del Internet de las cosas, el aprendizaje automático, el aprendizaje profundo y los teléfonos inteligentes entre otras tecnologías convergentes y disruptivas de vanguardia. Además, el trabajo destaca el potencial de los nanoportadores funcionales para la administración controlada y específica de fármacos como una rama de la medicina personalizada que promete revolucionar la atención médica. Por último, se hacen algunas reflexiones sobre medicina traslacional, así como comentarios finales y el recuento de los desafíos que implica llevar masivamente esta nueva y revolucionaria tecnología a los sistemas de salud globales.
Palabras clave
Citas
Aditya, N. P., Espinosa, Y. G., Norton, I. T. (2017). Encapsulation systems for the delivery of hydrophilic nutraceuticals: Food application. Biotechnology Advances, 35(4), 450-457. https://doi.org/10.1016/J.BIOTECHADV.2017.03.012
Ahmed, J., Rashed, M. A., Faisal, M., Harraz, F. A., Jalalah, M., Alsareii, S. A. (2021). Novel SWCNTs-mesoporous silicon nanocomposite as efficient non-enzymatic glucose biosensor. Applied Surface Science, 552, 149477. https://doi.org/10.1016/J.APSUSC.2021.149477
Alemán, J., Chadwick, A. V., He, J., Hess, M., Horie, K., Jones, R. G., Kratochvíl, P., Meisel, I., Mita, I., Moad, G., Penczek, S., Stepto, R. F. T. (2007). Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC recommendations 2007). Pure and Applied Chemistry, 79(10), 1801-1829. https://doi.org/10.1351/PAC200779101801MACHINEREADABLECITATION/RIS
Alosaimi, B., Hamed, M. E., Naeem, A., Alsharef, A. A., AlQahtani, S. Y., AlDosari, K. M., Alamri, A. A., Al-Eisa, K., Khojah, T., Assiri, A. M., Enani, M. A. (2020). MERS-CoV infection is associated with downregulation of genes encoding Th1 and Th2 cytokines/chemokines and elevated inflammatory innate immune response in the lower respiratory tract. Cytokine, 126, 154895. https://doi.org/10.1016/J.CYTO.2019.154895
Alzate, D., Cajigas, S., Robledo, S., Muskus, C., Orozco, J. (2020). Genosensors for differential detection of Zika virus. Talanta, 210, 120648. https://doi.org/10.1016/J.TALANTA.2019.120648
Alzate, D., Lopez-Osorio, M. C., Cortés-Mancera, F., Navas, M. C., Orozco, J. (2022). Detection of hepatitis E virus genotype 3 in wastewater by an electrochemical genosensor. Analytica Chimica Acta, 1221, 340121. https://doi.org/10.1016/J.ACA.2022.340121
Alzate, D., Marín, E., Orozco, J., Muskus, C. (2022). Differential detection of Zika virus based on PCR. Journal of Virological Methods, 301, 114459. https://doi.org/10.1016/J.JVIROMET.2022.114459
Arduini, F., Micheli, L., Moscone, D., Palleschi, G., Piermarini, S., Ricci, F., Volpe, G. (2016). Electrochemical biosensors based on nanomodified screen-printed electrodes: Recent applications in clinical analysis. TrAC Trends in Analytical Chemistry, 79, 114-126. https://doi.org/10.1016/J.TRAC.2016.01.032
Ashby, M., Cope, E., Cebon, D. (2013). Materials Selection for Engineering Design. Informatics for Materials Science and Engineering: Data-Driven Discovery for Accelerated Experimentation and Application, 219-244. https://doi.org/10.1016/B978-0-12-394399-6.00010-2
Aydın, M., Aydın, E. B., Sezgintürk, M. K. (2018). A disposable immunosensor using ITO based electrode modified by a star-shaped polymer for analysis of tumor suppressor protein p53 in human serum. Biosensors and Bioelectronics, 107, 1-9. https://doi.org/10.1016/J.BIOS.2018.02.017
Baig, N., Kammakakam, I., Falath, W., & Kammakakam, I. (2021). Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Materials Advances, 2(6), 1821–1871. https://doi.org/10.1039/D0MA00807A
Barsan, M. M., Ghica, M. E., Brett, C. M. A. (2015). Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: A review. Analytica Chimica Acta, 881, 1-23. https://doi.org/10.1016/J.ACA.2015.02.059
Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M., Rizzolio, F. (2019). The History of Nanoscience and Nanotechnology: From Chemical–Physical Applications to Nanomedicine. Molecules 2020, 25(1), 112. https://doi.org/10.3390/MOLECULES25010112
Becerra, E. H., Quinchía, J., Castro, C., Orozco, J. (2022). Light-Triggered Polymersome-Based Anticancer Therapeutics Delivery. Nanomaterials, 12(5), 836. https://doi.org/10.3390/NANO12050836
Bongomin, O., Yemane, A., Kembabazi, B., Malanda, C., Chikonkolo Mwape, M., Sheron Mpofu, N., Tigalana, D. (2020). Industry 4.0 Disruption and Its Neologisms in Major Industrial Sectors: A State of the Art. Journal of Engineering (United Kingdom), Volume 2020, Article ID 8090521, 45 pages. https://doi.org/10.1155/2020/8090521
Cajigas, S., Alzate, D., Fernández, M., Muskus, C., Orozco, J. (2022). Electrochemical genosensor for the specific detection of SARS-CoV-2. Talanta, 245, 123482. https://doi.org/10.1016/J.TALANTA.2022.123482
Cajigas, S., Alzate, D., Orozco, J. (2020). Gold nanoparticle/DNA-based nanobioconjugate for electrochemical detection of Zika virus. Microchimica Acta, 187(11), 1-10. https://doi.org/10.1007/S00604-020-04568-1/FIGURES/5
Cajigas, S., Orozco, J. (2020). Nanobioconjugates for Signal Amplification in Electrochemical Biosensing. Molecules, 25(15), 3542. https://doi.org/10.3390/MOLECULES25153542
Chamola, V., Hassija, V., Gupta, V., Guizani, M. (2020). A Comprehensive Review of the COVID-19 Pandemic and the Role of IoT, Drones, AI, Blockchain, and 5G in Managing its Impact. IEEE Access, 8, 90225-90265. https://doi.org/10.1109/ACCESS.2020.2992341
Colorado, D., Fernández, M., Orozco, J., Lopera, Y., Muñoz, D. L., Acín, S., Balcazar, N. (2020). Metabolic Activity of Anthocyanin Extracts Loaded into Non-ionic Niosomes in Diet-Induced Obese Mice. Pharmaceutical Research, 37(8), 1-11. https://doi.org/10.1007/S11095-020-02883-Z/TABLES/3
Cruz-Pacheco, A. F., Quinchía, J., Orozco, J. (2023). Nanostructured poly(thiophene acetic acid)/Au/poly(methylene blue) interface for electrochemical immunosensing of p53 protein. Microchimica Acta, 190(4), 1-12. https://doi.org/10.1007/S00604-023-05683-5
Cruz-Pacheco, A. F., Quinchía, J., Orozco, J. (2022). Cerium oxide–doped PEDOT nanocomposite for label-free electrochemical immunosensing of anti-p53 autoantibodies. Microchimica Acta, 189(6), 1-13. https://doi.org/10.1007/S00604-022-05322-5/TABLES/1
Cruz, J. A., Wishart, D. S. (2006). Applications of machine learning in cancer prediction and prognosis. Cancer Informatics, 2, 59-77. https://doi.org/10.1177/117693510600200030/ASSET/IMAGES/LARGE/10.1177_117693510600200030-FIG2.JPEG
Dincer, C., Bruch, R., Costa-Rama, E., Fernández-Abedul, M. T., Merkoçi, A., Manz, A., Urban, G. A., Güder, F. (2019). Disposable Sensors in Diagnostics, Food, and Environmental Monitoring. Advanced Materials, 31(30), 1806739. https://doi.org/10.1002/ADMA.201806739
Dragicevic, N., Ullrich, A., Tsui, E., Gronau, N. (2019). A conceptual model of knowledge dynamics in the industry 4.0 smart grid scenario. Knowledge Management Research & Practice, 18(2), 199-213. https://doi.org/10.1080/14778238.2019.1633893
Duan, T., Chen, Y., Wen, Q., Yin, J., Wang, Y. (2016). Three-dimensional macroporous CNT–SnO2 composite monolith for electricity generation and energy storage in microbial fuel cells. RSC Advances, 6(64), 59610-59618. https://doi.org/10.1039/C6RA11869K
Echeverri, D., Cruz-Pacheco, A. F., Orozco, J. (2023). Capacitive nanobiosensing of β-1,4- galactosyltransferase-V colorectal cancer biomarker. Sensors and Actuators B: Chemical, 374, 132784. https://doi.org/10.1016/J.SNB.2022.132784
Echeverri, D., Garg, M., Varón Silva, D., Orozco, J. (2020). Phosphoglycan-sensitized platform for specific detection of anti-glycan IgG and IgM antibodies in serum. Talanta, 217, 121117. https://doi.org/10.1016/J.TALANTA.2020.121117
Echeverri, D., Orozco, J. (2022a). β-1,4-Galactosyltransferase-V colorectal cancer biomarker immunosensor with label-free electrochemical detection. Talanta, 243, 123337. https://doi.org/10.1016/J.TALANTA.2022.123337
Echeverri, D., Orozco, J. (2022b). Glycan-Based Electrochemical Biosensors: Promising Tools for the Detection of Infectious Diseases and Cancer Biomarkers. Molecules, 27(23), 8533. https://doi.org/10.3390/MOLECULES27238533
Fernández, M., Orozco, J. (2021). Advances in Functionalized Photosensitive Polymeric Nanocarriers. Polymers, 13(15), 2464. https://doi.org/10.3390/POLYM13152464
Fidan-Yardimci, M., Akay, S., Sharifi, F., Sevimli-Gur, C., Ongen, G., Yesil-Celiktas, O. (2019). A novel niosome formulation for encapsulation of anthocyanins and modelling intestinal transport. Food Chemistry, 293, 57-65. https://doi.org/10.1016/J.FOODCHEM.2019.04.086
Frank, A. G., Dalenogare, L. S., Ayala, N. F. (2019). Industry 4.0 technologies: Implementation patterns in manufacturing companies. International Journal of Production Economics, 210, 15-26. https://doi.org/10.1016/J.IJPE.2019.01.004
Gallego, J., Tapia, J., Vargas, M., Santamaría, A., Orozco, J., López, D. (2017). Synthesis of graphene-coated carbon nanotubes-supported metal nanoparticles as multifunctional hybrid materials. Carbon, 111, 393-401. https://doi.org/10.1016/J.CARBON.2016.10.014
Götze, S., Azzouz, N., Tsai, Y. H., Groß, U., Reinhardt, A., Anish, C., Seeberger, P. H., Silva, D. V. (2014). Diagnosis of Toxoplasmosis Using a Synthetic Glycosylphosphatidylinositol Glycan. Angewandte Chemie International Edition, 53(50), 13701-13705. https://doi.org/10.1002/ANIE.201406706
Gu, H., Liu, C., Zhu, J., Gu, J., Wujcik, E. K., Shao, L., Wang, N., Wei, H., Scaffaro, R., Zhang, J., Guo, Z. (2017). Introducing advanced composites and hybrid materials. Advanced Composites and Hybrid Materials, 1(1), 1-5. https://doi.org/10.1007/S42114-017-0017-Y
Haddara, M., Staaby, A. (2018). RFID Applications and Adoptions in Healthcare: A Review on Patient Safety. Procedia Computer Science, 138, 80-88. https://doi.org/10.1016/J.PROCS.2018.10.012
Hasanzadeh, M., Shadjou, N., de la Guardia, M., Eskandani, M., Sheikhzadeh, P. (2012). Mesoporous silica-based materials for use in biosensors. TrAC Trends in Analytical Chemistry, 33, 117-129. https://doi.org/10.1016/J.TRAC.2011.10.011
Hosseinifard, M., Naghdi, T., Morales-Narváez, E., Golmohammadi, H. (2021). Toward Smart Diagnostics in a Pandemic Scenario: COVID-19. Frontiers in Bioengineering and Biotechnology, 9, 510. https://doi.org/10.3389/FBIOE.2021.637203/BIBTEX
Jayaraman, P. P., Forkan, A. R. M., Morshed, A., Haghighi, P. D., Kang, Y. B. (2020). Healthcare 4.0: A review of frontiers in digital health. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(2), e1350. https://doi.org/10.1002/WIDM.1350
Kamps, R., Brandão, R. D., van den Bosch, B. J., Paulussen, A. D. C., Xanthoulea, S., Blok, M. J., Romano, A. (2017). Next-Generation Sequencing in Oncology: Genetic Diagnosis, Risk Prediction and Cancer Classification. International Journal of Molecular Sciences 2017, 18(2), 308. https://doi.org/10.3390/IJMS18020308
Kelkar, S. S., Reineke, T. M. (2011). Theranostics: Combining imaging and therapy. Bioconjugate Chemistry, 22(10), 1879-1903. https://doi.org/10.1021/BC200151Q/ASSET/IMAGES/MEDIUM/BC-2011-00151Q_0006.GIF
Krueger, A. K., Hendriks, B., Gauch, S. (2019). The multiple meanings of translational research in (bio)medical research. History and Philosophy of the Life Sciences, 41(4), 1-24. https://doi.org/10.1007/S40656-019-0293-7/FIGURES/3
Kumar, M., Taki, K., Gahlot, R., Sharma, A., Dhangar, K. (2020). A chronicle of SARS-CoV-2: Part-I - Epidemiology, diagnosis, prognosis, transmission and treatment. Science of The Total Environment, 734, 139278. https://doi.org/10.1016/J.SCITOTENV.2020.139278
Lins, T., Oliveira, R. A. R. (2020). Cyber-physical production systems retrofitting in context of industry 4.0. Computers & Industrial Engineering, 139, 106193. https://doi.org/10.1016/J.CIE.2019.106193
Liu, J., Li, S., Liu, J., Liang, B., Wang, X., Wang, H., Li, W., Tong, Q., Yi, J., Zhao, L., Xiong, L., Guo, C., Tian, J., Luo, J., Yao, J., Pang, R., Shen, H., Peng, C., Liu, T., … Zheng, X. (2020). Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine, 55, 139-140. https://doi.org/10.1016/j.ebiom.2020.102763
Liu, Y., Liu, J., Tang, H., Liu, J., Xu, B., Yu, F., Li, Y. (2015). Fabrication of highly sensitive and selective electrochemical sensor by using optimized molecularly imprinted polymers on multi-walled carbon nanotubes for metronidazole measurement. Sensors and Actuators B: Chemical, 206, 647-652. https://doi.org/10.1016/J.SNB.2014.10.019
Malik, P., Patel, U., Mehta, D., Patel, N., Kelkar, R., Akrmah, M., Gabrilove, J. L., Sacks, H. (2021). Biomarkers and outcomes of COVID-19 hospitalisations: systematic review and meta-analysis. BMJ Evidence-Based Medicine, 26(3), 107-108. https://doi.org/10.1136/BMJEBM-2020-111536
Mancinelli, L., Cronin, M., Sadée, W. (2000). Pharmacogenomics: The promise of personalized medicine. AAPS PharmSci, 2(1), 29-41. https://doi.org/10.1208/PS020104
Mariappan, V., Manoharan, P. S., R, P., Shanmugam, L., Rao, S. R., Pillai, A. B. (2021). Potential biomarkers for the early prediction of SARS-COV-2 disease outcome. Microbial Pathogenesis, 158, 105057. https://doi.org/10.1016/J.MICPATH.2021.105057
Mejía, S. P., López, D., Cano, L. E., Naranjo, T. W., Orozco, J. (2022). Antifungal Encapsulated into Ligand-Functionalized Nanoparticles with High Specificity for Macrophages. Pharmaceutics, 14(9), 1932. https://doi.org/10.3390/PHARMACEUTICS14091932/S1
Mejía, S. P., Sánchez, A., Vásquez, V., Orozco, J. (2021). Functional Nanocarriers for Delivering Itraconazole Against Fungal Intracellular Infections. Frontiers in Pharmacology, 12, 1520. https://doi.org/10.3389/FPHAR.2021.685391/BIBTEX
Mena-Giraldo, P., Orozco, J. (2022). Photosensitive Polymeric Janus Micromotor for Enzymatic Activity Protection and Enhanced Substrate Degradation. ACS Applied Materials and
Interfaces, 14(4), 5897-5907. https://doi.org/10.1021/ACSAMI.1C14663/SUPPL_FILE/AM1C14663_SI_007.MP4
Mena-Giraldo, P., Pérez-Buitrago, S., Londoño-Berrío, M., Ortiz-Trujillo, I. C., Hoyos-Palacio, L. M., Orozco, J. (2020). Photosensitive nanocarriers for specific delivery of cargo into cells. Scientific Reports, 10(1), 1-12. https://doi.org/10.1038/s41598-020-58865-z
Morales-Narváez, E., Dincer, C. (2020). The impact of biosensing in a pandemic outbreak: COVID-19. Biosensors and Bioelectronics, 163, 112274. https://doi.org/10.1016/J.BIOS.2020.112274
Noreña-Caro, D., Álvarez-Láinez, M. (2016). Functionalization of polyacrylonitrile nanofibers with β-cyclodextrin for the capture of formaldehyde. Materials & Design, 95, 632–640. https://doi.org/10.1016/J.MATDES.2016.01.106
Peluso, M. J., Lu, S., Tang, A. F., Durstenfeld, M. S., Ho, H. E., Goldberg, S. A., Forman, C. A., Munter, S. E., Hoh, R., Tai, V., Chenna, A., Yee, B. C., Winslow, J. W., Petropoulos, C. J., Greenhouse, B., Hunt, P. W., Hsue, P. Y., Martin, J. N., Daniel Kelly, J., … Henrich, T. J. (2021). Markers of Immune Activation and Inflammation in Individuals With Postacute Sequelae of Severe Acute Respiratory Syndrome Coronavirus 2 Infection. The Journal of Infectious Diseases, 224 (11), 1839–1848. https://doi.org/10.1093/INFDIS/JIAB490
Pérez, D. J., Patiño, E. B., Orozco, J. (2022). Electrochemical Nanobiosensors as Point-of-Care Testing Solution to Cytokines Measurement Limitations. Electroanalysis, 34 (2), 184–211. https://doi.org/10.1002/ELAN.202100237
Pérez, D., rozco, J. (2022). Wearable electrochemical biosensors to measure biomarkers with complex blood-to-sweat partition such as proteins and hormones. Microchimica Acta, 189(3), 1-28. https://doi.org/10.1007/S00604-022-05228-2
Priyadharshini, V. S., Teran, L. M. (2016). Personalized Medicine in Respiratory Disease: Role of Proteomics. Advances in Protein Chemistry and Structural Biology, 102, 115-146. https://doi.org/10.1016/BS.APCSB.2015.11.008
Promphet, N., Rattanarat, P., Rangkupan, R., Chailapakul, O., Rodthongkum, N. (2015). An electrochemical sensor based on graphene/polyaniline/polystyrene nanoporous fibers modified electrode for simultaneous determination of lead and cadmium. Sensors and Actuators B: Chemical, 207(PartA), 526-534. https://doi.org/10.1016/J.SNB.2014.10.126
Quinchía, J., Echeverri, D., Cruz-Pacheco, A. F., Maldonado, M. E., Orozco, J. A. (2020). Electrochemical Biosensors for Determination of Colorectal Tumor Biomarkers. Micromachines, 11(4), 411. https://doi.org/10.3390/MI11040411
Rainnie, A., Dean, M. (2019). Industry 4.0 and the future of quality work in the global digital economy. Labour and Industry, 30(1), 16-33. https://doi.org/10.1080/10301763.2019.1697598
Rosin, F., Forget, P., Lamouri, S., Pellerin, R. (2019). Impacts of Industry 4.0 technologies on Lean principles. International Journal of Production Research, 58(6), 1644-1661. https://www.tandfonline.com/doi/full/10.1080/00207543.2019.1672902
Sánchez, A., Mejía, S. P., Orozco, J. (2020). Recent Advances in Polymeric Nanoparticle-Encapsulated Drugs against Intracellular Infections. Molecules, 25(16), 3760. https://doi.org/10.3390/MOLECULES25163760
Scherr, T. F., Gupta, S., Wright, D. W., Haselton, F. R. (2017). An embedded barcode for “connected” malaria rapid diagnostic tests. Lab on a Chip, 17(7), 1314-1322. https://doi.org/10.1039/C6LC01580H
Sony, M., Naik, S. (2020). Industry 4.0 integration with socio-technical systems theory: A systematic review and proposed theoretical model. Technology in Society, 61, 101248. https://doi.org/10.1016/J.TECHSOC.2020.101248
Soto, D., Alzate, M., Gallego, J., Orozco, J. (2018). Electroanalysis of an Iron@Graphene-Carbon Nanotube Hybrid Material. Electroanalysis, 30(7), 1521-1528. https://doi.org/10.1002/ELAN.201800115
Soto, D., Alzate, M., Gallego, J., Orozco, J. (2021). Hybrid nanomaterial/catalase-modified electrode for hydrogen peroxide sensing. Journal of Electroanalytical Chemistry, 880, 114826. https://doi.org/10.1016/J.JELECHEM.2020.114826
Soto, D., Orozco, J. (2022a). Peptide-based simple detection of SARS-CoV-2 with electrochemical readout. Analytica Chimica Acta, 1205, 339739. https://doi.org/10.1016/J.ACA.2022.339739
Soto, D., Orozco, J. (2022b). Hybrid Nanobioengineered Nanomaterial-Based Electrochemical Biosensors. Molecules, 27(12), 3841. https://doi.org/10.3390/MOLECULES27123841
Tan, H. T., Low, J., Lim, S. G., Chung, M. C. M. (2009). Serum autoantibodies as biomarkers for early cancer detection. The FEBS Journal, 276(23), 6880-6904. https://doi.org/10.1111/J.1742-4658.2009.07396.X
Ting, D. S. W., Carin, L., Dzau, V., Wong, T. Y. (2020). Digital technology and COVID-19. Nature Medicine, 26(4), 459-461. https://doi.org/10.1038/s41591-020-0824-5
Torrente-Rodríguez, R. M., Lukas, H., Tu, J., Min, J., Yang, Y., Xu, C., Rossiter, H. B., Gao, W. (2020). SARS-CoV-2 RapidPlex: A Graphene-Based Multiplexed Telemedicine Platform for Rapid and Low-Cost COVID-19 Diagnosis and Monitoring. Matter, 3(6), 1981-1998. https://doi.org/10.1016/j.matt.2020.09.027
Tsikala Vafea, M., Atalla, E., Georgakas, J., Shehadeh, F., Mylona, E. K., Kalligeros, M., Mylonakis, E. (2020). Emerging Technologies for Use in the Study, Diagnosis, and Treatment of Patients with COVID-19. Cellular and Molecular Bioengineering, 13(4), 249-257. https://doi.org/10.1007/S12195-020-00629-W/METRICS
Vásquez, G., Rey, A., Rivera, C., Iregui, C., Orozco, J. (2017). Amperometric biosensor based on a single antibody of dual function for rapid detection of Streptococcus agalactiae. Biosensors and Bioelectronics, 87, 453-458. https://doi.org/10.1016/J.BIOS.2016.08.082
Vásquez, V., Navas, M.-C., Jaimes, J. A., Orozco, J. (2022). SARS-CoV-2 electrochemical immunosensor based on the spike-ACE2 complex. Analytica Chimica Acta, 1205, 339718.https://doi.org/10.1016/J.ACA.2022.339718
Vásquez, V., Orozco, J. (2022). Detection of COVID-19-related biomarkers by electrochemical biosensors and potential for diagnosis, prognosis, and prediction of the course of the disease in the context of personalized medicine. Analytical and Bioanalytical Chemistry, 415(6), 1003-1031. https://doi.org/10.1007/S00216-022-04237-7
World Health Organization. (2019). WHO guideline. Recommendations on digital interventions for health system strengthening. 124.
Xie, J., Lee, S., Chen, X. (2010). Nanoparticle-based theranostic agents. Advanced Drug Delivery Reviews, 62(11), 1064-1079. https://doi.org/10.1016/J.ADDR.2010.07.009
Xu, X., Akay, A., Wei, H., Wang, S., Pingguan-Murphy, B., Erlandsson, B. E., Li, X., Lee, W., Hu, J., Wang, L., Xu, F. (2015). Advances in Smartphone-Based Point-of-Care Diagnostics. Proceedings of the IEEE, 103(2), 236-247. https://doi.org/10.1109/JPROC.2014.2378776
Yahata, N., Kasai, K., Kawato, M. (2017). Computational neuroscience approach to biomarkers and treatments for mental disorders. Psychiatry and Clinical Neurosciences, 71 (4), 215–237. https://doi.org/10.1111/PCN.12502
You, M., Yang, S., An, Y., Zhang, F., He, P. (2020). A novel electrochemical biosensor with molecularly imprinted polymers and aptamer-ased sandwich assay for determining amyloid-β oligomer. Journal of Electroanalytical Chemistry, 862, 114017. https://doi.org/10.1016/J.JELECHEM.2020.114017
Zerhouni, E. A. (2007). Translational Research: Moving Discovery to Practice. Clinical Pharmacology & Therapeutics, 81(1), 126-128. https://doi.org/10.1038/SJ.CLPT.6100029
Zhang, J., Chai, Y., Yuan, R., Yuan, Y., Bai, L., Xie, S. (2013). A highly sensitive electrochemical aptasensor for thrombin detection using functionalized mesoporous silica@multiwalled carbon nanotubes as signal tags and DNAzyme signal amplification. Analyst, 138(22), 6938-6945. https://doi.org/10.1039/C3AN01587D
Zhang, L., Guo, H. (2020). Biomarkers of COVID-19 and technologies to combat SARS-CoV-2.Advances in Biomarker Sciences and Technology, 2, 1-23. https://doi.org/10.1016/J.ABST.2020.08.001
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales